Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 657-663    
  研究论文 本期目录 | 过刊浏览 |
GaN薄膜大型V形表面坑的形成和光学性质
高志远;段焕淘;郝跃;李培咸;张金凤
西安电子科技大学微电子学院 教育部宽禁带半导体材料与器件重点实验室 西安 710071
Formation and optical properties of the large V-shaped surface pits in GaN thin film
 GAO Zhiyuan; DUAN Huantao; HAO Yue; LI Peixian; ZHANG Jinfeng
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices;
School of Microelectronics; Xidian University; Xi'an 710071
引用本文:

高志远 段焕淘 郝跃 李培咸 张金凤. GaN薄膜大型V形表面坑的形成和光学性质[J]. 材料研究学报, 2008, 22(6): 657-663.
, , , , . Formation and optical properties of the large V-shaped surface pits in GaN thin film[J]. Chin J Mater Res, 2008, 22(6): 657-663.

全文: PDF(588 KB)  
摘要: 

研究了用MOCVD设备在高温和低V/III条件下生长的GaN薄膜表面存在的与位错相连的大型V形表面坑, 并提出了一个有关质量疏运机制的模型以解释其形成机理.由衬底扩散上出来的Al原子对大型坑的形成具有辅助作用,并阻止了深能级杂质或空位缀饰与坑相连的位错. GaN内的位错是非辐射复合中心,但对深能级发光不起作用.

关键词 无机非金属材料 半导体材料 缺陷 材料表征 表面坑    
Abstract

Large V-shaped pits associated with the dislocation clusters are observed in the surface of GaN thin film  grown at relative high temperature or low V/III ratio in MOCVD. A model concerning the mass transport  mechanism is put forward to interpret their formation. Al atom diffused from the substrate is found to  assist in the formation of the large pit, and to prevent the dislocations connected with the pit from being  decorated by the deep level impurities or vacancy. Dislocations in GaN act as nonradiative recombination  centers, but do not contribute to the deep level luminescence.

Key wordsinorganic non-metallic materials    semiconductor materail    defects    material characterization    surface pit
收稿日期: 2008-05-27     
ZTFLH: 

TB321

 
基金资助:

国家重点基础研究发展计划(2002CB3119),(513270407)

1 Nakamura S, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science, 281, 956(1998)
2 Lester S S, Ponce F A, Craford M G, High dislocation densities in high efficiency GaN-based LED, Appl. Phys. Lett., 66, 1249(1995)
3 Pauc N, Philips M R, Aimez V, Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence, Appl. Phys. Lett., 89, 161905(2006)
4 Miraglia P Q, Preble E A, Roskowski A M, Einfeldt S, and Davis R F, Helical-type surface defects in GaN thin films epitaxially grown on GaN templates at reduced temperatures, J. Cryst. Growth, 253, 16(2003)
5 Heying B, Tarsa E J, Elsass C R, Fini P, DenBaars S P, and Speck J S, Dislocation mediated surface morphology of GaN, J. Appl. Phys., 85, 6470(1999)
6 Hitoshi S, Sadahiro K, Takeyoshi M, Yoshihiro S, Masayuki I, and Seikoh Y, Investigation of surface pits originating in dislocations in AlGaN/GaN epitaxial layer grown on Si substrate with buffer layer, Jap. J. Appl. Phys. Part I, 45, 2531(2006)
7 Chen H, Feenstra R M, Norhrup J E, Zywietz T, and Neugebauer, Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces, J. Phys. Rev. Lett., 85, 1902(2000)
8 Du D, Srolovitz D J, Faceted dislocation surface pits, Acta Materialia, 52, 3365(2004)
9 Michael A R, Hadis M, Luminescence properties of defects in GaN, J. Appl. Phys., 97, 061301(2005)
10 Lei H, Leipner H S, Schreiber J,Weyher J L, Wosinski T, and Grzegory I., Raman and cathodoluminescence study of dislocations in GaN, J. Appl. Phys., 92, 6666(2002)
11 Kim C, Kim S, Choi Y, and Leem S J, Correlation between the type of threading dislocations and photoluminescence characteristics at different doping concentrations of Si in GaN films, J. Appl. Phys., 92, 6343(2002)
12 Liu J P, Wang Y T, Yang H, Jiang D S, Jahn U, Ploog K H., Investigations on V-defects in quaternary AlInGaN epilayers, Appl. Phys. Lett., 84, 5449 (2004)
13 Pauc N, Phillips M R, Aimez V, and Drouin D., Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence, Appl. Phys. Lett., 89, 161905(2006)
14 Li S Y, Zhu J., Al diffusion in GaN buffer layer during the growth of GaN film, J. Cryst. Growth, 203, 473(1999)
15 Fung S, Xu X L, Zhao Y W, Sun W H, Chen X D, Sun N F, Sun T N and Jiang C X., Gallium/aluminum interdiffusion between n-GaN and sapphire, J. Appl. Phys., 84, 2355(1998)
16 Koleske D D, Wickenden A E, Henry R L, DeSisto W J, and Gorman R J., Growth model for GaN with comparison to structural, optical, and electrical properties, J. Appl. Phys., 84, 1998(1998)
17 Kato Y, Kitamura S, Hiramatsu K, and Sawaki N., Selective growth of wurtzite GaN and AlxGa1?xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy, J. Cryst. Growth, 144, 133(1994)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.