Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 95-101    DOI: 10.11901/1005.3093.2022.112
  研究论文 本期目录 | 过刊浏览 |
梯度结构铜铝合金的室温加工硬化行为
刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆()
昆明理工大学材料科学与工程学院 昆明 650093
Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides
LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun()
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
Huan LIU, Xingfu LI, Yi YANG, Cong LI, Zhengrong FU, Yunhua BAI, Zhenghong ZHANG, Xinkun ZHU. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides[J]. Chinese Journal of Materials Research, 2023, 37(2): 95-101.

全文: PDF(15207 KB)   HTML
摘要: 

在液氮温度下将4 mm厚的Cu-4.5%(质量分数)Al合金板材双表面机械研磨2 min,形成~250 μm厚的梯度结构层,在梯度结构层内产生了位错、层错、纳米孪晶等缺陷密度由表及芯呈梯度减少的微观结构,用数字图像相关法研究了拉伸过程中剪切带的演变过程。结果表明,双面约束的梯度结构材料能避免应变局部化,均匀分布的应力应变使材料避免了在较早阶段塑性失稳进入颈缩阶段,较好的保持了加工硬化能力。

关键词 有色金属及合金梯度结构强韧化缺陷密度梯度数字图像相关法    
Abstract

The two large surfaces of Cu-4.5%Al alloy sheet of 4mm in thickness was simultaneous sujected to mechanical grinding treatment at liquid nitrogen temperature for 2 min, then a Cu-Al alloy sandwich was acquired with two sides of gradient structure layer of ~250 μm in thickness, for which there should exist a negative gradient versus the distance to the alloy center in defect density of dislocations, faults, nano-twins etc. in the two surface layers. The evolution of shear bands of the sandwich alloy during tensile process was investigated by digital image correlation method. The results show that the locally concentrating of strain can be avoided by two-sided constrained gradient structure of the sandwich material, the uniform distribution of stress and strain may be beneficial to avoid the premature of plastic instability till the necking stage, in other word, a better work hardening ability can be maintained.

Key wordsnonferrous metals and alloys    gradient structure    toughening    defect density gradient    digital image correlation
收稿日期: 2022-02-25     
ZTFLH:  TG146.1+1  
基金资助:国家自然科学基金(51664033);国家自然科学基金(51901091)
作者简介: 刘欢,男,1996年生,硕士生
图1  拉伸样品尺寸、数字图像相关法斑点及观测区域以及微观表征区域
图2  梯度层的微观结构
图3  SMAT处理前后的真应力-应变曲线对比(背景为梯度层的金相显微图)、在梯度层~30 μm深度处的TEM明场像以及拓展位错的形成-全位错分解为不全位错
图4  梯度结构试样和粗晶试样的断口特征
图5  粗晶试样的剪切带演变
图6  梯度结构试样的剪切带演变
图7  GND塞积的示意图,在软区中诱导背应力,在硬区中诱导前应力[12]以及有限元模拟平均应变为0.2%应力和应变沿厚度方向的变化[30]
1 Petch N J. The cleavage strength of polycrystals [J]. Journal of the iron and steel institute, 1953, 174: 25
2 Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747
doi: 10.1088/0370-1301/64/9/303
3 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in materials science, 2006, 51(4): 427
doi: 10.1016/j.pmatsci.2005.08.003
4 Gleiter H. Nanocrystalline Materials [M]. Advanced Structural and Functional Materials. Springer, Berlin, Heidelberg, 1991: 1
5 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197
doi: 10.1073/pnas.1324069111
6 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185
doi: 10.1080/21663831.2014.935821
7 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587
doi: 10.1126/science.1200177 pmid: 21330487
8 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455
doi: 10.1126/science.1255940 pmid: 25237091
9 Zhu Y, Ameyama K, Anderson P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Materials Research Letters, 2021, 9(1): 1
doi: 10.1080/21663831.2020.1796836
10 Lu L, Wu X, Beyerlein I J. Preface to the viewpoint set on: Heterogeneous gradient and laminated materials [J]. Scripta Materialia, 2020, 187: 307
doi: 10.1016/j.scriptamat.2020.06.036
11 Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501
doi: 10.1073/pnas.1517193112
12 Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Materials Research Letters, 2019, 7(10): 393
doi: 10.1080/21663831.2019.1616331
13 Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scripta Materialia, 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
14 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Materials Today, 2018, 21(7): 713
doi: 10.1016/j.mattod.2018.03.006
15 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239
doi: 10.1016/S0022-5096(98)00103-3
16 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues [J]. Scripta materialia, 2003, 48(2): 119
doi: 10.1016/S1359-6462(02)00335-4
17 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-alloy Mg-Al-Ca-Mn-Zn [J]. Chinese Journal of Materials Research, 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
17 刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
18 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
19 Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Materialia, 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
20 Tian Y Z, Zhao L J, Chen S, et al. Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes [J]. Scientific reports, 2015, 5(1): 1
21 Liu Y, Xu K, Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(7): 535
doi: 10.11901/1005.3093.2019.557
21 刘 怡, 徐 康, 涂 坚 等. 高熵合金FeCoNiTi的微观组织演变和强韧化行为 [J]. 材料研究学报, 2020, 34(7): 535
22 Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process [J]. Chinese Journal of Materials Research, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
22 邱集明, 肖 寒, 王 佳 等. 半固态ZCuSn10铜合金二次加热组织的演化 [J]. 材料研究学报, 2015, 29(4): 277
doi: 10.11901/1005.3093.2014.542
23 Wei K, Hu R, Yin D, et al. Grain size effect on tensile properties and slip systems of pure magnesium [J]. Acta Materialia, 2021, 206
24 Zhou X, Li X Y, Lu K. Strain hardening in gradient nano-grained Cu at 77  K [J]. Scripta Materialia, 2018, 153: 6
doi: 10.1016/j.scriptamat.2018.04.039
25 Lu L, Zhu T, Shen Y, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper [J]. Acta Materialia, 2009, 57(17): 5165
doi: 10.1016/j.actamat.2009.07.018
26 Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys [J]. Scripta Materialia, 2009, 60(4): 211
doi: 10.1016/j.scriptamat.2008.10.005
27 Wang P, Guo A M, Hou Q Y, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel [J]. Chinese Journal of Materials Research, 2021, 35(3): 184
27 王 萍, 郭爱民, 侯清宇 等. 时效态Fe-Mn-Al-C钢的性能和变形机制 [J]. 材料研究学报, 2021, 35(3): 184
28 Chen A, Liu J, Wang H, et al. Gradient twinned 304 stainless steels for high strength and high ductility [J]. Materials Science and Engineering: A, 2016, 667: 179
doi: 10.1016/j.msea.2016.04.070
29 Huang M, Xu C, Fan G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Materialia, 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
30 Yang J, Xu L, Gao H, et al. Effect of global constraint on the mechanical behavior of gradient materials [J]. Materials Science and Engineering: A, 2021, 826
[1] 陈扬, 涂坚, 张琰斌, 谭力, 尹瑞森, 周志明. 形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响[J]. 材料研究学报, 2021, 35(2): 143-153.
[2] 刘怡, 徐康, 涂坚, 黄灿, 吴玮, 谭力, 张琰斌, 尹瑞森, 周志明. 高熵合金FeCoNiTi的微观组织演变和强韧化行为[J]. 材料研究学报, 2020, 34(7): 535-544.
[3] 赵征志,佟婷婷,赵爱民,苏岚,张岩. 1470 MPa级双相钢的性能特征与强韧化机制[J]. 材料研究学报, 2014, 28(11): 828-834.
[4] 张洪志; 张军; 何嘉松 . 聚砜基体原位混杂复合材料的梯度结构[J]. 材料研究学报, 2001, 15(6): 659-664.
[5] 齐乐华;李贺军;罗守靖. 锌合金的液态模锻强化[J]. 材料研究学报, 1997, 11(2): 178-182.
[6] 罗守靖;李贺军;杨绮雯;霍文灿. 液态挤压下 Al,Zn 合金的强韧化[J]. 材料研究学报, 1993, 7(2): 110-114.