Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 21-34    DOI: 10.11901/1005.3093.2024.146
  研究论文 本期目录 | 过刊浏览 |
1200 MPa级海洋平台用无碳化物贝氏体中锰钢腐蚀行为
李炎阳1, 于驰1(), 赵伟1, 高秀华2, 杜林秀2
1 东北大学秦皇岛分校资源与材料学院 秦皇岛 066004
2 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Corrosion Behavior of 1200 MPa Class Carbide-free Bainite Medium Manganese Steel for Offshore Platform
LI Yanyang1, YU Chi1(), ZHAO Wei1, GAO Xiuhua2, DU Linxiu2
1 College of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

李炎阳, 于驰, 赵伟, 高秀华, 杜林秀. 1200 MPa级海洋平台用无碳化物贝氏体中锰钢腐蚀行为[J]. 材料研究学报, 2025, 39(1): 21-34.
Yanyang LI, Chi YU, Wei ZHAO, Xiuhua GAO, Linxiu DU. Corrosion Behavior of 1200 MPa Class Carbide-free Bainite Medium Manganese Steel for Offshore Platform[J]. Chinese Journal of Materials Research, 2025, 39(1): 21-34.

全文: PDF(25281 KB)   HTML
摘要: 

采用等温淬火热处理技术制备出一系列无碳化物贝氏体组织中锰钢样品,进行周期浸润加速腐蚀实验和电化学腐蚀实验,研究在海洋飞溅区环境下1200 MPa级中锰钢内、外膜层腐蚀产物演变规律,探究腐蚀膜层组织结构对耐蚀性能的影响。结果表明,实验钢在等温340 ℃保温2 h后,板条边界清晰,组织均匀细小,屈服强度和抗拉强度分别为1297 MPa和1402 MPa,断后伸长率29.3%。随着腐蚀时间的增加,腐蚀产物内膜层由初期疏松多孔的γ-FeOOH逐渐转化为腐蚀后期结构致密的α-FeOOH,Cr和Cu等耐蚀元素在腐蚀产物内膜层中富集,并形成FeCr2O4及CuFe2O4等稳定的化合物。随着预腐蚀处理时间的增加,腐蚀电流密度先增大后减小,腐蚀电位先负移后正移,电荷转移电阻增大,腐蚀产物膜的保护作用逐渐增强。随着耐蚀元素在腐蚀产物内膜层富集程度增加,电流密度降低,电荷转移电阻升高,耐蚀性增强。

关键词 材料失效与保护海洋平台无碳化物贝氏体中锰钢腐蚀产物电化学腐蚀    
Abstract

A series of medium manganese test steels of non-carbide bainite structure were prepared by isothermal quenching heat treatment. The evolution of the inner- and outer-portion of corrosion products on the steels (1200 MPa class) and the effect of the microstructure of corrosion products on its corrosion resistance were studied via periodic immersion accelerated corrosion test in 3.5% NaCl solution and electrochemical corrosion measurement so that to simulate the corrosion situation encountered in the ocean splash zone. The results show that after being heated to 920 oC for 30 min and then quenched quickly in salt bath of 340 oC for 2 h, the steel presents an uniform and fine microstructure with clear lath boundaries, while its yield strength, tensile strength and elongation at breaking are 1297 MPa, 1402 MPa, and 29.3%, respectively. With the increase of corrosion time, the inner portion of corrosion products gradually changed from the loose porous γ-FeOOH in the initial stage to the dense α-FeOOH in the later stage of corrosion. The alloying elements beneficial for enhancing corrosion resistant such as Cr and Cu were enriched in the inner portion of the corrosion products, and stable compounds such as FeCr2O4 and CuFe2O4 were formed. With the increase of pre-corrosion treatment time, the corrosion current density first increases and then decreases, the corrosion potential first shifts negatively and then positively, the charge transfer resistance increases, and the protective effect of the corrosion product film is gradually enhanced. With the increase of the enrichment degree of corrosion resistant elements in the inner portion of corrosion products, the corrosion current density decreases, the charge transfer resistance increases, and the corrosion resistance increases.

Key wordsmaterial failure and protection    ocean platform    carbide-free bainite    medium manganese steel    corrosion products    electrochemical corrosion
收稿日期: 2024-04-01     
ZTFLH:  TG172.5  
基金资助:河北省高等学校科学技术研究项目(ZD2020413)
通讯作者: 于驰,副教授,yuchi@neuq.edu.cn,研究方向为海洋工程用钢组织性能控制
Corresponding author: YU Chi, Tel: 18932571365, E-mail: yuchi@neuq.edu.cn
作者简介: 李炎阳,男,2001年生,硕士生
MaterialCSiMnMoCrCuFe
1#0.11.65.00.40.4-Bal.
2#0.11.65.00.40.8-Bal.
3#0.11.65.00.40.40.35Bal.
表1  实验钢的化学成分
图1  实验钢的温度—膨胀量曲线
MaterialAc1 / oCAc3 / oCMs / oC
1#663865342
2#640833330
3#630820325
表2  实验钢的奥氏体和马氏体相变点
MaterialHeat treatmentYield strength / MPaTensile strength / MPaYield ratio / %Elongation / %Hardness (HV5)
1#920 oC - 0.5 h + 340 oC - 2 h1206132790.929.3433.5
2#1233136490.428.2435.5
3#1297140292.529.1437.9
表3  实验钢的力学性能
图2  实验钢等温淬火340 ℃保温2 h的显微组织形态
图3  不同腐蚀周期下实验钢的腐蚀失重量和累计腐蚀速率
Time / hMaterial24 h72 h168 h240 h360 h576 h
Weight / g1#0.79912.11833.95514.66175.12995.377
2#0.71681.81543.56144.41134.88965.2049
3#0.75141.6873.30154.20124.60825.1351
表4  不同腐蚀周期下实验钢的腐蚀失重量
图4  实验钢腐蚀产物XRD物相分析
图5  不同腐蚀周期下实验钢腐蚀膜层部分宏观形貌
图6  不同腐蚀周期下实验钢腐蚀膜层微观形貌
图7  实验钢在腐蚀576 h后的微观形貌以及EDS能谱分析
图8  不同腐蚀周期下实验钢吸附量及孔隙率
图9  中锰钢在模拟海洋飞溅区的腐蚀模型图
图10  不同腐蚀周期下实验钢的电化学Tafel极化曲线
Time / hMaterial24 h72 h168 h240 h360 h576 h
Ecorr / V1#-0.857-0.884-0.858-0.811-0.764-0.642
2#-0.821-0.863-0.810-0.762-0.652-0.511
3#-0.843-0.758-0.688-0.696-0.604-0.497
icorr / A·cm-21#2.155 × 10-42.326 × 10-41.611 × 10-42.794 × 10-51.794 × 10-51.226 × 10-5
2#2.195 × 10-45.194 × 10-41.792 × 10-42.656 × 10-52.582 × 10-71.370 × 10-7
3#2.959 × 10-52.397 × 10-58.175 × 10-51.669 × 10-53.754 × 10-71.300 × 10-7
表5  不同腐蚀周期下实验钢的极化曲线对应的Tafel参数
Time / h2472168240360576
OCP/V1#-0.651-0.675-0.637-0.608-0.577-0.549
2#-0.634-0.662-0.623-0.574-0.539-0.480
3#-0.648-0.622-0.594-0.558-0.518-0.475
表6  不同腐蚀周期下实验钢的开路电位(OCP)
图11  不同腐蚀周期下实验钢腐蚀产物奈Nyquist图和等效电路图
MaterialRs / Ω·cm2R1 / Ω·cm2C1 / μF·cm-2Q / Ω-1·cm-2s nRct / Ω·cm2nRw / Ω-1·cm-2·s0.5
1#72 h4.323.646.158 × 10-21.192 × 10-613.760.1920.0211
360 h9.4612.053.622 × 10-22.084 × 10-624.580.3070.0203
576 h13.6915.771.875 × 10-21.841 × 10-647.790.2160.0287
2#72 h10.725.614.437 × 10-21.634 × 10-624.170.1640.0227
360 h16.4718.262.172 × 10-24.530 × 10-645.320.2120.0176
576 h18.2422.930.652 × 10-23.488 × 10-658.310.2790.0341
3#72 h8.836.454.394 × 10-22.124 × 10-623.960.1680.0270
360 h15.3518.791.781 × 10-22.658 × 10-647.510.1970.0255
576 h22.1424.370.957 × 10-21.143 × 10-659.650.2530.0326
表7  不同腐蚀时间(72~576 h)后三种实验钢的EIS曲线拟合结果
图12  不同腐蚀周期下实验钢腐蚀产物Bode图
1 Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 391(1): 1
1 刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势 [J]. 鞍钢技术, 2015, 391(1): 1
2 Zhou Y, Jia T, Zhang X, et al. Investigation on tempering of granular bainite in an offshore platform steel [J]. Mater. Sci. Eng: A, 2015, 626: 352
3 Hu J, Du L X, Liu H, et al. Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure [J]. Mater. Sci. Eng.: A, 2015, 647: 144
4 Ye Q, Han G, Xu J, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel [J]. Mater. Sci. Eng.: A, 2022, 831: 142244
5 Zhou Y L, Wang G T, Wang L J, et al. Effect of heat treatment on microstructure and properties of high formability 0.1%C-3%Mn medium manganese steel [J]. Chin. J. Mater. Res, 2022, 36(5): 343
5 周永浪, 王官涛, 王立军 等. 热处理工艺对高成型性0.1%C-3%Mn中锰钢组织和性能的影响[J]. 材料研究学报, 2022, 36(5): 343
doi: 10.11901/1005.3093.2021.300
6 Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng: A, 2016, 675: 153
7 Lee S, Kang S H, Nam J H, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel [J]. Metall. Mater. Trans. A, 2019, 50(24): 2655
8 Adamczyk-Cieślak B, Koralnik M, Kuziak R, et al. Studies of bainitic steel for rail applications based on carbide-free, low-alloy steel [J]. Metall. Mater. Trans. A, 2021, 52(12): 5429
doi: 10.1007/s11661-021-06480-6
9 Kazum O, Bobby Kannan M, Beladi H, et al. Aqueous corrosion performance of nanostructured bainitic steel [J]. Mater. Des., 2014, 54: 67
10 Zhang D, Gao X, Su G, et al. Corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment [J]. J. Mater. Eng. Perform, 2017, 26(6): 2599
11 Su G, Gao X. Comparison of medium manganese steel and Q345 steel on corrosion behavior in a 3.5 wt % NaCl solution [J]. Materials, 2017, 10(8): 938
12 Liu W, Zheng M Y, Wang Z L, et al. Influence of alloy element and microstructure on corrosion behavior of medium-Mn steel in a simulated marine splash zone [J]. Iron Steel, 2017, 52(8): 75
12 刘 伟, 郑梦瑶, 王志磊 等. 成分和组织对中锰钢模拟飞溅区腐蚀行为影响 [J]. 钢铁, 2017, 52(08): 75
13 Su G, Gao X, Huo M, et al. New insights into the corrosion behaviour of medium manganese steel exposed to a NaCl solution spray [J]. Constr. Build. Mater., 2020, 261: 119908
14 Yan X, Yan L, Kang S, et al. Corrosion behavior and electrochemical corrosion of a high manganese steel in simulated marine splash zone [J]. Mater. Res. Express., 2021, 8(12): 126507
15 Tang Y, Li B, Shi H, et al. Simultaneous improvement of corrosion and wear resistance of Fe-Mn-Al-C lightweight steels: The role of Cr/Mo [J]. Mater. Charact., 2023, 205: 113274
16 Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behavior of a new type of low Cr alloy steel containing Al in simulated oilfield production fluid [J]. Chin. J. Mater. Res., 2020, 34(6): 443
16 朱金阳, 谭成通, 暴飞虎 等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443
doi: 10.11901/1005.3093.2019.489
17 Mondal J, Das K, Das S. Isothermal transformation kinetics, microstructure and mechanical properties of a carbide free bainitic steel [J]. Mater. Charact., 2021, 177: 111166
18 Ling Y, Hu F, Yan H, et al. Phase transformation and plasticity mechanism of 2GPa medium carbon medium manganese nano-bainite steels [J]. Iron Steel, 2022, 57(11): 131
18 凌 雨, 胡 锋, 严 恒 等. 2GPa中碳中锰纳米贝氏体钢的相变和塑性机理[J]. 钢铁, 2022, 57(11): 131
19 Xu X, Wang Z, Gao G, et al. The effect of microstructure evolution on the ratchetting-fatigue interaction of carbide-free bainite rail steels under different heat-treatment conditions [J]. Int. J. Fatigue, 2022, 160: 106872
20 Liu J P, Li Y Q, Jin J Y, et al. Effect of processing techniques on microstructure and mechanical properties of carbide-free bainitic rail steels [J]. Mater. Today Commun., 2020, 25: 101531
21 Su G. Influence of Mn on the corrosion behaviour of medium manganese steels in a simulated seawater environment [J]. Int. J. Electrochem. Sci., 2016, 10.20964/2016.11.51: 9447
22 Gao X H, Zhang D Z, Su G Q, et al. Seawater corrosion behavior in splash zone of medium manganese steel for offshore platform [J]. J. Northeast. Univ. (Nat. Sci. Ed.), 2017, 38(09): 1234
22 高秀华, 张大征, 苏冠侨 等. 海洋平台用中锰钢飞溅区海水腐蚀行为[J]. 东北大学学报(自然科学版), 2017, 38(09): 1234
23 Kancharla H, Mandal G K, Singh S S, et al. Effect of prior copper-coating on the microstructural development and corrosion behavior of hot-dip galvanized Mn containing high strength steel sheet [J]. Surf. Coat. Technol., 2022, 437: 128347
24 Ma Y, Li Y, Wang F. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112(3): 844
25 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
26 Yan X, Kang S, Xu M, et al. Corrosion product film of a medium-Mn steel exposed to simulated marine splash zone environment [J]. Materials, 2021, 14(19): 5652
27 Zhang D Z. Study on microstructure and corrosion behavior of 690 MPa medium manganese steel for offshore platform [D]. Shenyang: Northeastern University, 2016
27 张大征. 海洋平台用690 MPa级中锰钢组织性能及海水腐蚀行为研究 [D]. 沈阳: 东北大学, 2016
28 de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
29 Yang J, Lu Y, Guo Z, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
30 Yue L, Meng Y, Han J, et al. Pitting corrosion behavior of Cu-P-RE weathering steels [J]. J. Rare Earths, 2023, 41(2): 321
31 Hofer C, Leitner H, Winkelhofer F, et al. Structural characterization of “carbide-free” bainite in a Fe-0.2C-1.5Si-2.5Mn steel [J]. Mater. Charact., 2015, 102: 85
32 Lin W L, Deng X T, Wang Q, et al. Effect of Tin on corrosion behavior of low alloy high strength steel in Marine environment [J]. Iron Steel, 2023, 58(07): 113
32 林文丽, 邓想涛, 王 麒 等. 锡对低合金高强钢海洋环境中腐蚀行为的影响[J]. 钢铁, 2023, 58(07): 113
33 Yu P, Song Y, Jin X, et al. Study on the efficiency of manganese oxide-bearing manganese sand for removing Mn2+ from aqueous solution [J]. Microporous Mesoporous Mater., 2024, 364: 112859
34 Kishore K, Chandan A K, Purty M, et al. Effect of microstructure on corrosion behavior of medium manganese steel [J]. Mater. Lett., 2023, 330: 133344
35 Khan A A, Razin A A, S-S Ahammed D, et al. Comparison of electrochemical corrosion performance of eutectic Al-Si automotive alloy in deep seawater and 3.5% NaCl solution [J]. Mater. Today Proc., 2023, 82: 241
36 Yang L Y, Tan Z W, Li T Y, et al. Study on dynamic erosion corrosion behavior of pipeline defect area using WBE and EIS testing techniques [J]. Chin. J. Mater. Res., 2022, 36(5): 381
36 杨留洋, 谭卓伟, 李同跃 等. 利用WBE及EIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381
doi: 10.11901/1005.3093.2021.134
37 Hajšman J, Kučerová L, Burdová K. The influence of varying aluminium and manganese content on the corrosion resistance and mechanical properties of high strength steels [J]. Metals, 2021, 11(9): 1446
38 Wang D, Zhong Q, Yang J, et al. Effects of Cr and Ni on the microstructure and corrosion resistance of high-strength low alloy steel [J]. J. Mater. Res. Technol., 2023, 23: 36
39 Kityk A, Hnatko M, Pavlik V, et al. Electrochemical surface treatment of manganese stainless steel using several types of deep eutectic solvents [J]. Mater. Res. Bull., 2021, 141: 111348
40 Zhang T, Liu W, Khan H I, et al. Effects of Cu on the corrosion resistance of heat-treated weathering steel in a marine environment [J]. Mater. Today Phys., 2023, 36: 101160
[1] 景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
[2] 崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
[3] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[4] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[5] 李玉峰, 冯峰, 刘世博, 刘丽爽, 高晓辉. 氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能[J]. 材料研究学报, 2024, 38(11): 861-871.
[6] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[7] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[8] 周永浪, 王官涛, 王立军, 刘春明. 热处理工艺对高成型性0.1%C-3%Mn中锰钢组织和性能的影响[J]. 材料研究学报, 2022, 36(5): 343-352.
[9] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[10] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[11] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[12] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[13] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[14] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[15] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.