Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 453-462    DOI: 10.11901/1005.3093.2023.261
  研究论文 本期目录 | 过刊浏览 |
中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能
刘莹, 陈平(), 周雪, 孙晓杰, 王瑞琪
大连理工大学化工学院 精细化工重点实验室 大连 116024
Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites
LIU Ying, CHEN Ping(), ZHOU Xue, SUN Xiaojie, WANG Ruiqi
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
Ying LIU, Ping CHEN, Xue ZHOU, Xiaojie SUN, Ruiqi WANG. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. Chinese Journal of Materials Research, 2024, 38(6): 453-462.

全文: PDF(11621 KB)   HTML
摘要: 

以Cu2O立方体为自牺牲模板,进行协同刻蚀-沉淀(CEP)路线、高温煅烧、聚多巴胺(PDA)涂层包覆和高温硫化,制备出中空FeS2/NiS2/Ni3S2@NC纳米立方体复合材料并研究其电化学性能。结果表明,通过CEP路线并引入Ni和Fe金属元素,制备过程较为简单和安全。这种材料的中空立方体结构,能抑制体积膨胀和减小锂离子嵌入脱出产生的机械应力。引入N掺杂碳层(NC)能极大地提高材料的导电性和结构稳定性,更好地维持立方体结构。在电流密度为0.2 A·g-1的条件下经过100次循环后,FeS2/NiS2/Ni3S2@NC纳米立方体复合材料的放电比容量保持在899.4 mAh·g-1,表明其具有较高的比容量、良好的循环稳定性和倍率性能(3.0 A·g-1电流密度下比容量为427.5 mAh·g-1)。

关键词 复合材料锂离子电池负极材料过渡金属硫化物    
Abstract

A novel composite hollow FeS2/NiS2/Ni3S2@NC cube is synthesized through collaborative etch-precipitation (CEP) route, high-temperature calcination, polydopamine coating and high-temperature vulcanization with a pre-prepared Cu2O cube as sacrificial template. The preparation process is safe, while Ni and Fe are successfully incorporated through the CEP route. The hollow cube structure can effectively restrain the volume expansion and slow down the mechanical stress caused by lithium-ion embedding and release. The introduction of N-doped carbon layer (NC) can greatly improve the conductivity and structural stability of the composite material, so that it can better maintain the stability of the cube structure. Furthermore, after 100 cycles at a current density of 0.2 A·g-1, the specific discharge capacity of the FeS2/NiS2/Ni3S2@NC cube composite can be maintained at 899.4 mAh·g-1, showing high specific capacity, good cycle stability, and great rate performance (427.5 mAh·g-1 at 3.0 A·g-1).

Key wordscomposite    lithium-ion batteries    anode materials    transition metal sulfides
收稿日期: 2023-05-17     
ZTFLH:  TM 912  
基金资助:兴辽英才项目(XLYC1802085);国家自然科学基金(51873109);大连市科技创新基金重大项目(2019J11CY007)
通讯作者: 陈平,教授,pchen@dlut.edu.cn, 研究方向为高性能高分子材料与先进聚合物基复合材料与功能一体化设计与制备
Corresponding author: CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn
作者简介: 刘 莹,女,1998年生,硕士生
图1  制备中空FeS2/NiS2/Ni3S2@NC立方体的示意图
图2  Cu2O、NF-OH和NFO的XRD谱、FeS2/NiS2/Ni3S2@NC与FeS2/NiS2/Ni3S2的XRD谱的对比以及 FeS2/NiS2/Ni3S2@NC的拉曼谱
图3  FeS2/NiS2/Ni3S2@NC的红外光谱、N2吸附/脱附等温线和孔径分布
图4  FeS2/NiS2/Ni3S2@NC的全谱以及Ni 2p、 Fe 2p、 S 2p、 C 1s和N 1s的XPS谱
图5  Cu2O、NF-OH、FeS2/NiS2/Ni3S2以及FeS2/NiS2/Ni3S2@NC的SEM像
图6  FeS2/NiS2/Ni3S2@NC不同放大倍率下的TEM图像、FeS2/NiS2/Ni3S2@NC的HRTEM图像以及FeS2/NiS2/Ni3S2@NC对应的EDS元素分布
图7  扫描速率为0.1 mV·s-1时FeS2/NiS2/Ni3S2@NC的CV曲线、电流密度为0.2 A·g-1时FeS2/NiS2/Ni3S2@NC第1、2、5、10、50和100次循环的GCD分布、FeS2/NiS2/Ni3S2@NC和FeS2/NiS2/Ni3S2阳极的倍率性能以及电流密度为0.2 A·g-1时FeS2/NiS2/Ni3S2@NC和FeS2/NiS2/Ni3S2的循环性能
图8  电流密度为1.0 A·g-1时FeS2/NiS2/Ni3S2@NC和FeS2/NiS2/Ni3S2循环500圈后性能的对比
图9  FeS2/NiS2/Ni3S2@NC和FeS2/NiS2/Ni3S2未循环前的阻抗对比和FeS2/NiS2/Ni3S2@NC循环100圈后阻抗对比图
图10  FeS2/NiS2/Ni3S2@NC在不同扫速下的CV曲线、不同氧化还原峰处的lg(i)与lg(ʋ)的比值、不同扫速下的赝电容和扩散控制电容贡献率以及0.8 mV·s-1下的赝电容贡献
1 Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of MoP nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
1 肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
2 Xia A, Zhao C P, Zeng X X, et al. Preparation and electrochemical properties of B-doped MnO2 [J]. Chin. J. Mater. Res., 2021, 35: 36
2 夏 傲, 赵晨鹏, 曾啸雄 等. B掺杂MnO2的制备及其电化学性能 [J]. 材料研究学报, 2021, 35: 36
3 Xu J J, Cai X Y, Cai S M, et al. High‐energy lithium‐ion batteries: recent progress and a promising future in applications [J]. Energy Environ. Mater., 2023, 12450: 1
4 Clarke M, Alonso J J. Lithium-ion battery modeling for aerospace applications [J]. J. Aircraft, 2021, 58: 1323
5 Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c pmid: 36134007
6 Liu H G, Jing R X, Wang Z L, et al. FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries [J]. MRS Commun., 2021, 11: 418
7 Zheng T, Li G D, Meng X G, et al. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries [J]. Chem. Eur. J., 2019, 25(3): 885
8 Gu C P, Hong Y, Wang X, et al. Fabrication of hollow SnO2/ZnS@C nanocubes as anode materials for advanced lithium-ion battery [J]. J. Alloys Compd., 2021, 878: 160375
9 Xiong X L, Yue J M, Zhou A X, et al. Electrochemical performance of spinel LiMn2O4 in Water-in-salt aqueous electrolyte [J]. Energy Storage Sci. Technol., 2020, 9(2): 375
9 熊小琳, 岳金明, 周安行 等. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能 [J]. 储能科学与技术, 2020, 9(2): 375
doi: 10.19799/j.cnki.2095-4239.2020.0069
10 Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage [J]. Nano Energy, 2019, 64: 103899
11 Xu S T, Zhang Z F, Wu T Y, et al. Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries [J]. Ionics, 2018, 24: 99
12 Gong H, Kang Y, Zhang R, et al. Preparation of nitrogen-doped carbon dots for highly sensitive detection of amoxicillin [J]. Chin. J. Appl. Chem., 2020, 37(2): 227
doi: 10.11944/j.issn.1000-0518.2020.02.190226
12 弓 辉, 康 玉, 张 荣 等. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测 [J]. 应用化学, 2020, 37(2): 227
13 Liu J, Wang J S, Zhang B, et al. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15364
14 Li Y L, Yan X H, Zhang W J, et al. Hierarchical micro-nano structure based NiCoAl-LDH nanosheets reinforced by NiCo2S4 on carbon cloth for asymmetric supercapacitor [J]. J. Electroanal. Chem., 2022, 905: 115982
15 Li J, Zheng J Q, Wu C K, et al. Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries [J]. J. Alloys Compd., 2021, 874: 103899
16 Wu C K, Zheng J Q, Li J, et al. Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries [J]. J. Alloys Compd., 2022, 895: 162593
17 Guo S P, Li J C, Xiao J R, et al. Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: outstanding cyclic and rate performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 37694
18 Zuo X T, Song Y, Zhen M M. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications [J]. Appl. Surf. Sci., 2020, 500: 144000
19 Geng H B, Su H, Lin C H, et al. Double-layer N, S-codoped carbon protection of MnS nanoparticles enabling ultralong-life and high-rate lithium ion storage [J]. ACS Appl. Energy Mater., 2018, 1: 4867
20 Wang P, Yuan A H, Wang Z T, et al. Self-templated formation of hierarchically yolk-shell-structured ZnS/NC dodecahedra with superior lithium storage properties [J]. Nanoscale, 2021, 13: 1988
doi: 10.1039/d0nr07450k pmid: 33443501
21 Yang T, Tian L L, Zhou E M, et al. Design of Ni(OH)2 nanocages@MnO2 nanosheets core-shell architecture to jointly facilitate electrocatalytic dynamic for highly sensitive detection of dopamine [J]. Biosens. Bioelectron., 2019, 143: 111634
22 Li X, He G G, Tian L L, et al. Preparation of NiCo2O4 nanocages and its applications in supercapacitors [J]. New Chem. Mater., 2022, 50(11): 229
22 李 雪, 贺格格, 田亮亮 等. NiCo2O4纳米笼的制备及其在超级电容器中的应用 [J]. 化工新型材料, 2022, 50(11): 229
23 Xu X K, Zhou Y M, You H R, et al. Engineering nano-NiS2 embedded in graphitized carbon skeleton in hollow spherical structure as stable anode material for reversible Li+ storage [J]. Appl. Surf. Sci., 2022, 605: 154758
24 Chen H J, Wang Y, Ma X D, et al. Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes [J]. J. Mater. Sci., 2020, 55(36): 17081
25 Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries [J]. Carbon, 2021, 171: 171
26 Li D, Li X W, Hou X Y, et al. Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries [J]. Chem. Commun., 2014, 50(66): 9361
27 Murphin Kumar P S, Ponnusamy V, Kim H I, et al. Molybdenum-doped nickel disulfide (NiS2:Mo) microspheres as an active anode material for high-performance durable lithium-ion batteries [J]. ACS Appl. Energy Mater., 2022, 5(6): 6734
28 Xu Q T, Li J C, Xue H G, et al. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. J. Power Sources, 2018, 396: 675
29 Yang R, Wang C, Li Y F, et al. Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries [J]. J. Electroanal. Chem., 2022, 918: 116467
30 Liu Q, Chen Z Z, Qin R, et al. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries [J]. Electrochim. Acta, 2019, 304: 405
31 Xiao L, Yu W H, Huang H, et al. Preparation and performance of TiS3 nanoflakes as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2022, 36: 822
31 肖 揽, 于文华, 黄 昊 等. 锂离子电池负极材料TiS3纳米片的制备和性能 [J]. 材料研究学报, 2022, 36: 822
32 Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li‐ion storage capacity [J]. ChemElectroChem, 2021, 8: 1678
33 Zhang H K, Liu J Y, Lin X R, et al. A novel binary metal sulfide hybrid Li-ion battery anode: three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance [J]. J. Alloys Compd., 2020, 817: 153293
34 Dong X F, Chen F J, Chen G G, et al. NiS2 nanodots on N, S-doped graphene synthesized via interlayer confinement for enhanced lithium-/sodium-ion storage [J]. J. Colloid Interf. Sci., 2022, 619: 359
[1] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[2] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[3] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[4] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[5] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[6] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[11] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.