|
|
中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能 |
刘莹, 陈平( ), 周雪, 孙晓杰, 王瑞琪 |
大连理工大学化工学院 精细化工重点实验室 大连 116024 |
|
Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites |
LIU Ying, CHEN Ping( ), ZHOU Xue, SUN Xiaojie, WANG Ruiqi |
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
Ying LIU,
Ping CHEN,
Xue ZHOU,
Xiaojie SUN,
Ruiqi WANG.
Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. Chinese Journal of Materials Research, 2024, 38(6): 453-462.
1 |
Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of MoP nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
|
1 |
肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
|
2 |
Xia A, Zhao C P, Zeng X X, et al. Preparation and electrochemical properties of B-doped MnO2 [J]. Chin. J. Mater. Res., 2021, 35: 36
|
2 |
夏 傲, 赵晨鹏, 曾啸雄 等. B掺杂MnO2的制备及其电化学性能 [J]. 材料研究学报, 2021, 35: 36
|
3 |
Xu J J, Cai X Y, Cai S M, et al. High‐energy lithium‐ion batteries: recent progress and a promising future in applications [J]. Energy Environ. Mater., 2023, 12450: 1
|
4 |
Clarke M, Alonso J J. Lithium-ion battery modeling for aerospace applications [J]. J. Aircraft, 2021, 58: 1323
|
5 |
Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c
pmid: 36134007
|
6 |
Liu H G, Jing R X, Wang Z L, et al. FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries [J]. MRS Commun., 2021, 11: 418
|
7 |
Zheng T, Li G D, Meng X G, et al. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries [J]. Chem. Eur. J., 2019, 25(3): 885
|
8 |
Gu C P, Hong Y, Wang X, et al. Fabrication of hollow SnO2/ZnS@C nanocubes as anode materials for advanced lithium-ion battery [J]. J. Alloys Compd., 2021, 878: 160375
|
9 |
Xiong X L, Yue J M, Zhou A X, et al. Electrochemical performance of spinel LiMn2O4 in Water-in-salt aqueous electrolyte [J]. Energy Storage Sci. Technol., 2020, 9(2): 375
|
9 |
熊小琳, 岳金明, 周安行 等. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能 [J]. 储能科学与技术, 2020, 9(2): 375
doi: 10.19799/j.cnki.2095-4239.2020.0069
|
10 |
Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage [J]. Nano Energy, 2019, 64: 103899
|
11 |
Xu S T, Zhang Z F, Wu T Y, et al. Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries [J]. Ionics, 2018, 24: 99
|
12 |
Gong H, Kang Y, Zhang R, et al. Preparation of nitrogen-doped carbon dots for highly sensitive detection of amoxicillin [J]. Chin. J. Appl. Chem., 2020, 37(2): 227
doi: 10.11944/j.issn.1000-0518.2020.02.190226
|
12 |
弓 辉, 康 玉, 张 荣 等. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测 [J]. 应用化学, 2020, 37(2): 227
|
13 |
Liu J, Wang J S, Zhang B, et al. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15364
|
14 |
Li Y L, Yan X H, Zhang W J, et al. Hierarchical micro-nano structure based NiCoAl-LDH nanosheets reinforced by NiCo2S4 on carbon cloth for asymmetric supercapacitor [J]. J. Electroanal. Chem., 2022, 905: 115982
|
15 |
Li J, Zheng J Q, Wu C K, et al. Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries [J]. J. Alloys Compd., 2021, 874: 103899
|
16 |
Wu C K, Zheng J Q, Li J, et al. Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries [J]. J. Alloys Compd., 2022, 895: 162593
|
17 |
Guo S P, Li J C, Xiao J R, et al. Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: outstanding cyclic and rate performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 37694
|
18 |
Zuo X T, Song Y, Zhen M M. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications [J]. Appl. Surf. Sci., 2020, 500: 144000
|
19 |
Geng H B, Su H, Lin C H, et al. Double-layer N, S-codoped carbon protection of MnS nanoparticles enabling ultralong-life and high-rate lithium ion storage [J]. ACS Appl. Energy Mater., 2018, 1: 4867
|
20 |
Wang P, Yuan A H, Wang Z T, et al. Self-templated formation of hierarchically yolk-shell-structured ZnS/NC dodecahedra with superior lithium storage properties [J]. Nanoscale, 2021, 13: 1988
doi: 10.1039/d0nr07450k
pmid: 33443501
|
21 |
Yang T, Tian L L, Zhou E M, et al. Design of Ni(OH)2 nanocages@MnO2 nanosheets core-shell architecture to jointly facilitate electrocatalytic dynamic for highly sensitive detection of dopamine [J]. Biosens. Bioelectron., 2019, 143: 111634
|
22 |
Li X, He G G, Tian L L, et al. Preparation of NiCo2O4 nanocages and its applications in supercapacitors [J]. New Chem. Mater., 2022, 50(11): 229
|
22 |
李 雪, 贺格格, 田亮亮 等. NiCo2O4纳米笼的制备及其在超级电容器中的应用 [J]. 化工新型材料, 2022, 50(11): 229
|
23 |
Xu X K, Zhou Y M, You H R, et al. Engineering nano-NiS2 embedded in graphitized carbon skeleton in hollow spherical structure as stable anode material for reversible Li+ storage [J]. Appl. Surf. Sci., 2022, 605: 154758
|
24 |
Chen H J, Wang Y, Ma X D, et al. Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes [J]. J. Mater. Sci., 2020, 55(36): 17081
|
25 |
Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries [J]. Carbon, 2021, 171: 171
|
26 |
Li D, Li X W, Hou X Y, et al. Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries [J]. Chem. Commun., 2014, 50(66): 9361
|
27 |
Murphin Kumar P S, Ponnusamy V, Kim H I, et al. Molybdenum-doped nickel disulfide (NiS2:Mo) microspheres as an active anode material for high-performance durable lithium-ion batteries [J]. ACS Appl. Energy Mater., 2022, 5(6): 6734
|
28 |
Xu Q T, Li J C, Xue H G, et al. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. J. Power Sources, 2018, 396: 675
|
29 |
Yang R, Wang C, Li Y F, et al. Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries [J]. J. Electroanal. Chem., 2022, 918: 116467
|
30 |
Liu Q, Chen Z Z, Qin R, et al. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries [J]. Electrochim. Acta, 2019, 304: 405
|
31 |
Xiao L, Yu W H, Huang H, et al. Preparation and performance of TiS3 nanoflakes as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2022, 36: 822
|
31 |
肖 揽, 于文华, 黄 昊 等. 锂离子电池负极材料TiS3纳米片的制备和性能 [J]. 材料研究学报, 2022, 36: 822
|
32 |
Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li‐ion storage capacity [J]. ChemElectroChem, 2021, 8: 1678
|
33 |
Zhang H K, Liu J Y, Lin X R, et al. A novel binary metal sulfide hybrid Li-ion battery anode: three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance [J]. J. Alloys Compd., 2020, 817: 153293
|
34 |
Dong X F, Chen F J, Chen G G, et al. NiS2 nanodots on N, S-doped graphene synthesized via interlayer confinement for enhanced lithium-/sodium-ion storage [J]. J. Colloid Interf. Sci., 2022, 619: 359
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|