Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 381-390    DOI: 10.11901/1005.3093.2022.367
  研究论文 本期目录 | 过刊浏览 |
热老化对316LN力学性能和晶间腐蚀敏感性的影响
杨宝磊1,2, 刘廷光2(), 苏香林3, 范宇2, 邱亮1, 陆永浩2
1.天津重型装备工程研究有限公司 天津 300450
2.北京科技大学 国家材料服役安全科学中心 北京 100083
3.中国兵器工业集团 内蒙古第一机械集团有限公司工艺研究所 包头 014030
Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN
YANG Baolei1,2, LIU Tingguang2(), SU Xianglin3, FAN Yu2, QIU Liang1, LU Yonghao2
1.Tianjin Heavy Equipment Engineering Research Co., Ltd., Tianjin 300450, China
2.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3.Research Institute of Processing Technology, Inner Mongolia First Machinery Group Co., Ltd., North Industries Group Co., Ltd., Baotou 014030, China
引用本文:

杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
Baolei YANG, Tingguang LIU, Xianglin SU, Yu FAN, Liang QIU, Yonghao LU. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. Chinese Journal of Materials Research, 2023, 37(5): 381-390.

全文: PDF(20122 KB)   HTML
摘要: 

将热锻固溶态316LN不锈钢试样在400℃空气中热老化处理400~10000 h,使用金相显微镜、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)等手段分析了固溶态及热老化试样的显微组织,用小冲杆、纳米压痕和维氏硬度测试研究了热老化对这种材料力学性能的影响;用草酸电解侵蚀方法进行晶间腐蚀试验,用EBSD和原子力显微镜(AFM)定量分析了热老化对各类型晶界晶间腐蚀敏感性的影响。结果表明,在400℃热老化10000 h后316LN不锈钢的微米级显微组织、晶粒尺寸、晶界形貌和晶界特征分布都没有明显的变化。但是,热老化使晶粒的晶格常数变小,其原因是固溶在晶粒内的间隙原子和位错等向晶界处扩散迁移,使材料的强度和硬度提高而塑性和抗晶间腐蚀性能降低。各类型晶界的晶间腐蚀敏感性都随着热老化时间的延长而提高,但是CSL晶界的晶间腐蚀敏感性低于随机晶界。

关键词 金属材料316LN不锈钢热老化小冲杆晶间腐蚀CSL晶界    
Abstract

Nitrogen enhanced low carbon 316LN stainless steel, as a single-phase austenitic stainless steel, is selected as a candidate material of primary pipe for the third-generation pressurized water reactors. In the present work, the solution annealed 316LN was thermal aged at 400℃ for 400, 1000, 5000 and 10000 hours, respectively. The microstructures of the solution annealed and thermal aged steels were compared by optical microscope, scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The effect of thermal aging on mechanical properties of the steels was evaluated by using small punch test, nanoindentation and microhardness tester. The intergranular corrosion resistance of the steels was measured by using electrolytic etching in oxalic acid solution, and the effect of thermal aging on the corrosion resistance of various types of grain boundaries were characterized by using EBSD and atomic force microscope (AFM). The results show that thermal aging at 400℃ for 10000 h will not cause microstructural changes in the micron level of 316LN stainless steel. No change was observed in grain size, grain boundary morphology and characteristics of grain boundary distribution, and no new phase was formed during thermal aging. However, after thermal aging, the lattice parameter becomes smaller, which may be ascribed to that the interstitial atoms and dislocations originally dissolved in grains diffused and migrated towards the grain boundaries. This may result in changes of the mechanical properties of the 316LN, including the increase of strength and hardness, and the lower of plasticity and intergranular corrosion resistance. The intergranular corrosion susceptibilities of all types of grain boundaries increase with the extension of thermal aging time, but the susceptibility of coincidence site lattice (CSL) grain boundaries is always lower than that of random grain boundaries. Hence grain boundary engineering, which is a thermomechanical process and could produce high fraction of low-∑CSL grain boundaries in materials, could be applied to mitigate the intergranular corrosion of 316LN.

Key wordsmetallic materials    316LN stainless steel    thermal aging    small punch test    intergranular corrosion    CSL grain boundary
收稿日期: 2022-07-06     
ZTFLH:  TG142.71  
基金资助:国家重点研发计划(2019YFB1900905);中央高校基本科研业务费专项(FRF-TP-20-019A3)
作者简介: 杨宝磊,男,1996年生
图1  小冲杆实验装置
图2  316LN在400℃热老化不同时间后的金相照片和扫描图
图3  始态和热老化不同时间后316LN不锈钢的晶界网络图
图4  始态和热老化不同时间试样的晶界特征分布
图5  热老化不同时间后316LN不锈钢的XRD谱
图6  热老化不同时间试样的位移-载荷曲线
图7  热老化不同时间试样的小冲杆性能变化
图8  热老化不同时间试样的小冲杆断口形貌
图9  热老化不同时间试样的纳米压痕性能和显微维氏硬度
图10  热老化不同时间试样的晶间腐蚀形貌
图11  热老化10000 h试样晶间腐蚀后的原子力显微镜分析
图12  晶间腐蚀沟深度的AFM测试图
As-received / nm

5000 h

/ nm

10000 h

/ nm

Random grain boundary190298460
∑3154223409
∑9103226304
表1  不同热老化时间和不同类型晶界的腐蚀深度
1 Shu G G, Lu N W. Aging problems and life evaluation for the key metallic components in PWR nuclear power plant [J]. Electr. Power, 2006(05): 53
1 束国刚, 陆念文. 压水堆核电厂关键金属部件的老化和寿命评估 [J]. 中国电力, 2006(05): 53
2 Wang X T, Li S L. Research status and development trend of nuclear power steel [J]. Adv. Mater. Ind., 2014(07): 2
2 王西涛, 李时磊. 核电用钢的研究现状及发展趋势 [J]. 新材料产业, 2014(07): 2
3 Fan Y, Liu T G, Xin L, et al. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review [J]. J. Nucl. Mater., 2021, 544: 152693
doi: 10.1016/j.jnucmat.2020.152693
4 Li S, Wang Y, Wang X, et al. G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study [J]. J. Nucl. Mater., 2014, 452: 382
doi: 10.1016/j.jnucmat.2014.05.069
5 Schwarm S C, Mburu S, Kolli R P, et al. Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels [J]. Materials Science and Engineering: A, 2018, 720: 130
doi: 10.1016/j.msea.2018.02.058
6 Zhang H, Li S L, Liu G, et al. Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel [J]. Acta Metall. Sin., 2017, 53: 531
6 张 海, 李时磊, 刘 刚 等. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响 [J]. 金属学报, 2017, 53: 531
7 Yao Y H, Wei J F, Wang Z P. Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels [J]. Materials Science and Engineering: A, 2012, 551: 116
doi: 10.1016/j.msea.2012.04.105
8 Li S L, Wang Y L, Zhang H L, et al. Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging [J]. J. Nucl. Mater., 2013, 433: 41
doi: 10.1016/j.jnucmat.2012.09.004
9 Guo C, Yu D, Sun X, et al. Fatigue failure mechanism and life prediction of a cast duplex stainless steel after thermal aging [J]. Int. J. Fatigue., 2021, 146: 106161
doi: 10.1016/j.ijfatigue.2021.106161
10 Xue F, Wang Z X, Shu G, et al. Thermal aging effect on Z3CN20.09M cast duplex stainless steel [J]. Nucl. Eng. Des., 2009, 239: 2217
doi: 10.1016/j.nucengdes.2009.06.009
11 Chen Y, Yang B, Zhou Y, et al. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application [J]. Acta Mater., 2020, 197: 172
doi: 10.1016/j.actamat.2020.07.046
12 Li S L, Wang Y L, Wang H, et al. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2016, 469: 262
doi: 10.1016/j.jnucmat.2015.11.043
13 Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity [J]. Nucl. Eng. Des., 2009, 239: 16
doi: 10.1016/j.nucengdes.2008.09.009
14 Chandra K, Singhal R, Kain V, et al. Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behavior [J]. Materials Science and Engineering: A, 2010, 527: 3904
doi: 10.1016/j.msea.2010.02.069
15 Wang M J, Chen L, Liu X C, et al. Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment [J]. Corros. Sci., 2014, 81: 117
doi: 10.1016/j.corsci.2013.12.011
16 Wang Y Q, Yang B, Han J, et al. Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant [J]. Procedia Engineering, 2012, 36: 88
doi: 10.1016/j.proeng.2012.03.015
17 Chung H M. Aging and life prediction of cast duplex stainless steel components [J]. International Journal of Pressure Vessels and Piping, 1995, 50(1~3), 179
18 Pumphrey P H, Akhurst K N. Aging kinetics of CF3 cast stainless steel in temperature range 300~400℃ [J]. Materials Science and Technology, 1990, 6, 211
doi: 10.1179/mst.1990.6.3.211
19 Zhang Q, Singaravelu A S S, Zhao Y, et al. Mechanical properties of a thermally-aged cast duplex stainless steel by nanoindentation and micropillar compression [J]. Materials Science and Engineering: A, 2019, 743: 520
doi: 10.1016/j.msea.2018.11.112
20 Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14(11): 1479
doi: 10.1016/0001-6160(66)90168-4
21 Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials [J]. Acta Metall. Sin., 2022, 58: 726
21 王江伟, 陈映彬, 祝 祺 等. 金属材料的晶界塑性变形机制 [J]. 金属学报, 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
22 Wang M J, Ma Q, Li J L, et al. Influence of thermal aging on microstructure and mechanical properties of nuclear grade 316LN forged austenitic stainless steel [J]. J. Yanshan Univ., 2013, 37(05): 385
22 王明家, 马 千, 李景丽 等. 热老化对核级316LN锻造控氮奥氏体不锈钢微观组织及性能的影响 [J]. 燕山大学学报. 2013, 37(05):385
23 Cao X Y, Zhu P, Liu T G, et al. Thermal aging effects on mechanical and electrochemical properties of stainless steel weld overlay cladding [J]. Surf. Coat Tech., 2018, 344: 111
doi: 10.1016/j.surfcoat.2018.02.046
24 Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
25 Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Commun., 2019, 10(1): 1
doi: 10.1038/s41467-018-07882-8
26 Zhu Q, Zhou H F, Chen Y B, et al. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125(1):182
doi: 10.1016/j.jmst.2022.02.040
27 Luo Q, Wang L, Liu S W, et al. Tendence of thermal aging embrittlement of weld of primary pipe made of 316LN stainless stell in nuclear power plant [J]. J. Iron Steel Res., 2015, 27: 4
27 罗 强, 王 理, 刘思维 等. 核电主管道用316LN不锈钢焊缝热老化脆化的趋势 [J]. 钢铁研究学报. 2015, 27: 4
28 Hong S H, Seo M G, Jang C H, et al. Evaluation of the effects of thermal aging of austenitic stainless steel welds using small punch test [J]. Procedia Eng., 2015, 130: 1010
doi: 10.1016/j.proeng.2015.12.253
29 Fujii T, Suzuki M, Shimamura Y. Susceptibility to intergranular corrosion in sensitized austenitic stainless steel characterized via crystallographic characteristics of grain boundaries [J]. Corros Sci., 2022, 195: 109946
doi: 10.1016/j.corsci.2021.109946
30 Liu T G, Xia S, Bai Q, et al. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water [J]. J. Nucl. Mater., 2018, 498: 290
doi: 10.1016/j.jnucmat.2017.10.004
31 Hong Y B, Kokawa H, Zhang J W, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel [J]. Scr. Mater., 2003(49): 219
32 Kokawa H, Watanabe T, Karashima S. Dissociation of lattice dislocations in coincidence boundaries [J]. J. Mater. Sci., 1983, 18(4):1183
doi: 10.1007/BF00551988
33 Kokawa H, Watanabe T, Karashima S. Structural changes during sliding of aluminium grain boundaries with different initial structures [J]. Scr. Metall., 1983, 17(10)
34 Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res Mech, 1984, 11: 47
35 Xia S, Zhou B X, Chen W J, Effect of deformation and heat-treatments on the grain boundary character distribution for 690 alloy [J]. Rare Met. Mater. Eng.. 2008, (06): 999
35 夏 爽, 周邦新, 陈文觉. 形变及热处理对690合金晶界特征分布的影响 [J]. 稀有金属材料与工程, 2008, (06): 999
36 Gao X, Wang M L, Liu T G, et al. Investigation on thermo-mechanical processing and intergranular corrosion of TP347H stainless steel [J]. Mater. Sci. Tech, 2021, 37: 909
doi: 10.1080/02670836.2021.1963917
37 Shi F, Tian P C, Jia N, et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization [J]. Corros Sci., 2016, 107: 49
doi: 10.1016/j.corsci.2016.02.019
38 Tokita S, Kokawa H, Kodama S, et al. Suppression of intergranular corrosion by surface grain boundary engineering of 304 austenitic stainless steel using laser peening plus annealing [J]. Mater. Today Commun., 2020, 25: 101572
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.