Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 391-400    DOI: 10.11901/1005.3093.2022.448
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为
刘涛1,2,3(), 尹志强1, 雷经发1,2, 葛永胜1, 孙虹1,2
1.安徽建筑大学机械与电气工程学院 合肥 230601
2.工程机械智能制造安徽省教育厅重点实验室 合肥 230601
3.灾害环境人员安全安徽省重点实验室 合肥 230601
Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression
LIU Tao1,2,3(), YIN Zhiqiang1, LEI Jingfa1,2, GE Yongsheng1, SUN Hong1,2
1.School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
2.Anhui Provincial Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China
3.Anhui Province Key Laboratory of Human Safety, Hefei 230601, China
引用本文:

刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
Tao LIU, Zhiqiang YIN, Jingfa LEI, Yongsheng GE, Hong SUN. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. Chinese Journal of Materials Research, 2023, 37(5): 391-400.

全文: PDF(19636 KB)   HTML
摘要: 

对选区激光熔化316L不锈钢(SLM-316L)的高应变率(1000、2000、3000 s-1)压缩力学性能进行测试,用扫描电镜和背散射衍射(EBSD)等手段表征冲击加载前后试样的微观结构,并分析晶体结构的差异以及位错滑移、孪生行为等微观变形机制。结果表明:SLM-316L不锈钢在高应变率载荷作用下有显著的应变率强化效应,其微观组织由截面呈不规则多边形的柱状胞晶密排结构组成,高应变率加载使晶体取向的择优性降低、小角度晶界和孪晶界数量增加,且孪晶界在小角度晶界的交叉缠绕区分布密集,试样的塑性变形过程伴随着位错滑移及孪生行为。

关键词 金属材料塑性变形高应变率压缩316L不锈钢选区激光熔化    
Abstract

The selective laser melting 316L stainless steel (SLM-316L) was prepared with preferred process parameters, and then the effect of high strain rate compression on the plastic deformation behavior of SLM 316L stainless steel by high strain rates (1000, 2000 and 3000 s-1) was assessed by means of split Hopkinson pressure bar, scanning electron microscope and backscattered electron diffractometer in terms of the microstructure and microscopic deformation such as dislocation slip and twinning etc. Results show that SLM-316L stainless steel exhibits a significant strain rate strengthening effect by high strain-rate loading, and its microstructure is composed of closely packed columnar grains with irregular polygonal cross section. High strain rate loading decreases the degree of preferred orientation of grains and increases the number of small-angle grain boundaries and twin boundaries, and the twin boundaries are densely emerge in the cross-twisting region of small-angle grain boundaries. The plastic deformation process of the SLM-316L stainless steel is accompanied by dislocation slip and twinning behavior.

Key wordsmetallic materials    plastic deformation    high strain rate compression    316L stainless steel    selective laser melting
收稿日期: 2022-08-18     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51805003);安徽高校优秀拔尖人才培育项目(gxyqZD2019057);灾害环境人员安全安徽省重点实验室开放课题(DEPS-2021-02)
作者简介: 刘涛,男,1984年生,博士
图1  粉末的微观形貌及粒径分布
ElementsSiCrMnMoNiFe
Mass fraction/%0.7417.950.722.4610.94Bal.
Atomic fraction/%1.4719.180.721.4210.35Bal.
表1  粉末的元素成分分析结果
图2  SLM成型设备的工作原理
图3  SHPB装置的原理图
图4  动态压缩实验的原始波形
图5  应力平衡曲线
图6  微观结构表征试样
图7  动态压缩应力-应变曲线
图8  高应变率加载前试样的微观形貌
图9  柱状胞晶及其密排结构示意图
图10  高应变率加载后试样的微观形貌
图11  晶体形貌和取向分析
图12  晶粒尺寸的统计
图13  大角度和小角度晶界分布图
图14  孪晶界的分布
图15  试样的KAM图和位错密度统计
1 Lee W S, Chen T H, Lin C F, et al. Impact response and microstructural evolution of 316L stainless steel under ambient and elevated temperature conditions [J]. Metall. Mater. Trans., 2012, 43A(11) : 3998
2 Ziętala M, Durejko T, Panowicz R, et al. Microstructure evolution of 316L steel prepared with the use of additive and conventional methods and subjected to dynamic loads: a comparative study [J]. Materials, 2020, 13(21): 4893
doi: 10.3390/ma13214893
3 Yvell K, Grehk T M, Engberg G. Microstructure characterization of 316L deformed at high strain rates using EBSD [J]. Mater. Charact., 2016, 122: 14
doi: 10.1016/j.matchar.2016.10.017
4 Li J N, Gao D, Lu Y, et al. Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading [J]. Mater. Sci. Eng., 2022, 855A: 143896
5 Song R B, Xiang J Y, Hou D P. Characteristics of mechanical properties and microstructure for 316L austenitic stainless steel [J]. J. Iron Steel Res. Int., 2011, 18(11): 53
6 Chen W, Yin G F, Feng Z, et al. Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting [J]. Metals, 2018, 8(9): 729
doi: 10.3390/met8090729
7 Gray G T, Livescu V, Rigg P A, et al. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel [J]. Acta Mater., 2017, 138: 140
doi: 10.1016/j.actamat.2017.07.045
8 Shao K, Zhou Q L, Liu Y, et al. Effect of laser power on the mechanical properties of selective laser melted 316L stainless steel [J]. Laser. Eng., 2022, 53(5-6): 393
9 Chen J, Wei H Y, Bao K, et al. Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process [J]. J. Mater. Res. Technol., 2021, 11: 170
doi: 10.1016/j.jmrt.2020.12.097
10 Cai G D, Cheng X Y, Wang D. Preparation of 316L stainless steel products by fused deposition model 3D-printing and effect of La on morphology and distribution of precipitates [J]. Chin. J. Mater. Res., 2020, 34(8): 635
10 蔡国栋, 程西云, 王 典. FDM型3D打印316L不锈钢试样和La对析出物形貌和分布的影响 [J]. 材料研究学报, 2020, 34(8): 635
doi: 10.11901/1005.3093.2019.591
11 Kim K T. Mechanical performance of additively manufactured austenitic 316L stainless steel [J]. Nucl. Eng. Technol., 2022, 54(1): 244
doi: 10.1016/j.net.2021.07.041
12 Chen J, Wei H Y, Zhang X F, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing [J]. Mater. Des., 2021, 198: 109325
doi: 10.1016/j.matdes.2020.109325
13 Chang C, Wu W, Zhang H, et al. Mechanical characteristics of superimposed 316L lattice structures under static and dynamic loading [J]. Adv. Eng. Mater., 2021, 23(7): 2001536
doi: 10.1002/adem.v23.7
14 Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
15 Jiang H Z, Fang J H Y, Chen Q S, et al. State of the art of selective laser melted 316L stainless steel: process, microstructure, and mechanical properties [J]. Chin. J. Lasers, 2022, 49(14): 1402804
15 蒋华臻, 房佳汇钰, 陈启生 等. 激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状 [J]. 中国激光, 2022, 49(14): 1402804
16 Ma Y Y, Liu Y D, Shi W T, et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder [J]. Laser Optoelectron. Progr., 2019, 56(10): 101403
16 马英怡, 刘玉德, 石文天 等. 扫描速度对选区激光熔化316L不锈钢粉末成形缺陷及性能的影响 [J]. 激光与光电子学进展, 2019, 56(10): 101403
17 Carassus H, Guérin J D, Morvan H, et al. An experimental investigation into influences of build orientation and specimen thickness on quasi-static and dynamic mechanical responses of selective laser melting 316L stainless steel [J]. Mater. Sci. Eng., 2022, 835A: 142683
18 Waqar S, Liu J W, Sun Q D, et al. Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel [J]. Rapid Prototyping J., 2020, 26(10): 1739
doi: 10.1108/RPJ-12-2019-0320
19 Zeng F Y, Yang Y T, Qian G A. Fatigue properties and S-N curve estimating of 316L stainless steel prepared by SLM [J]. Int. J. Fatigue, 2022, 162: 106946
doi: 10.1016/j.ijfatigue.2022.106946
20 Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56(5): 683
20 余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
21 Wang C, Lin X, Wang L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, 815A: 141317
22 Wang X, Liu C, Zhou Z Q, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations [J]. J. Mater. Res. Technol., 2021, 13: 823
doi: 10.1016/j.jmrt.2021.05.010
23 Narayana P L, Lee S W, Park C H, et al. Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks [J]. Comp. Mater. Sci., 2020, 179: 109617
doi: 10.1016/j.commatsci.2020.109617
24 Li Y L, Ge Y S, Lei J F, et al. Mechanical properties and constitutive model of selective laser melting 316L stainless steel at different scanning speeds [J]. Adv. Mater. Sci. Eng., 2022, 2022: 2905843
25 Lee W S, Lin C F, Chen T H, et al. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading [J]. J. Nucl. Mater., 2012, 420(1-3): 226
doi: 10.1016/j.jnucmat.2011.10.005
26 Zhou S F, Xie M, Wu C Y, et al. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104: 81
doi: 10.1016/j.jmst.2021.06.062
27 Yang D C, Zhao Y, Kan X F, et al. Twinning behavior in deformation of SLM 316L stainless steel [J]. Mater. Res. Express, 2022, 9(9): 096502
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.