Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 371-380    DOI: 10.11901/1005.3093.2021.630
  研究论文 本期目录 | 过刊浏览 |
两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制
周章瑞1, 吕培森1, 赵国旗2, 张剑3, 赵云松3, 刘丽荣1()
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.贵州工程应用技术学院机械学院 毕节 551700
3.中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures
ZHOU Zhangrui1, LV Peisen1, ZHAO Guoqi2, ZHANG Jian3, ZHAO Yunsong3, LIU Lirong1()
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
3.Science and Technology on Advanced High Temperature Structural Material Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
Zhangrui ZHOU, Peisen LV, Guoqi ZHAO, Jian ZHANG, Yunsong ZHAO, Lirong LIU. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. Chinese Journal of Materials Research, 2023, 37(5): 371-380.

全文: PDF(16863 KB)   HTML
摘要: 

用扫描电镜(SEM)和透射电镜(TEM)观察两种“W替Re”型低成本第二代镍基单晶高温合金分别在982℃/248 MPa和1070℃/137 MPa条件下持久变形断裂后的微观组织,研究了其变形的机制。结果表明,两种合金的持久性能均达到第二代单晶高温合金的水平;持久变形断裂后γ'相连接并合并成“N型筏”结构,随着与距离断口位置的接近γ'相的扭曲变形程度加剧。在相同条件下8.5W+1.0Re合金γ'相的筏形化程度比8.0W+1.5Re合金低;与982℃/248 MPa条件相比,在1070℃/137 MPa下两种合金持久变形断裂后的界面位错网更加致密。在相同条件下,8.0W+1.5Re合金比8.5W+1.0Re合金的位错网更致密,8.5W+1.0Re合金在两条件下持久变形断裂后都能观察到剪切进γ'相的a<010>超位错;两种合金失稳断裂的主要原因是,γ基体中的a/2<110>位错剪切进入γ'相使筏形γ'相变形加剧,裂纹在γ/γ'界面处萌生和扩展,最终使合金断裂;γ/γ'两相界面上的位错网和a<010>超位错可在一定程度上提高合金的持久变形抗力。

关键词 金属材料镍基单晶高温合金持久性能变形机制筏形γ'    
Abstract

The microstructure and deformation mechanism of two "replacement of Re by W" type low-cost second-generation nickel based single crystal superalloys after fracture at 982℃/248 MPa and 1070℃/137 MPa were investigated by SEM and TEM. The results show that the stress rupture properties of two alloys both reached the level of the second-generation single crystal superalloys; After fracture γ′ phases connected and combined to form "N-type" rafted structure, and the degree of γ′ phases distortion increased with the distance from the fracture. Under the same conditions, the raft degree of γ′ phases in 8.5W+1.0Re alloy was lower than that in 8.0W+1.5Re alloy; At 1070℃/137 MPa, the interfacial dislocation networks of the two alloys became denser; However, the dislocation networks of 8.0W+1.5Re alloy were denser than that of 8.5W+1.0Re alloy, a<010> superdislocations shearing into the γ′ phases were observed after fracture in 8.5W+1.0Re alloy under both conditions; The unstable fracture of the two alloys was mainly ascribed to a/2<110> dislocations in γ matrix shearing into the rafted γ′ phases, which intensify the deformation of rafted γ′ phases, and results in initiation and propagation of microcracks at the γ/γ′ interface, eventually leading to the fracture of the alloy; The interfacial dislocation networks and a<010> superdislocations could both improve the creep resistance of the two alloys.

Key wordsmetallic materials    nickel based single crystal superalloy    stress rupture properties    deformation mechanism    rafted γ′ phases
收稿日期: 2021-11-12     
ZTFLH:  TG146.1  
基金资助:辽宁省自然科学基金(2020-MS-212);贵州省教育厅青年科技人才成长项目([2022]121)
作者简介: 周章瑞,男,1998年生,硕士生
AlloysCrWReCoAl+Ti+TaMoHfCNi
8.0W+1.5Re5.08.01.59.014.60.60.2100×10-6Bal.
8.5W+1.0Re5.08.51.09.014.60.60.2100×10-6Bal.
表1  两种单晶高温合金名义成分(质量分数, %)
图1  两种合金的热处理制度
图2  持久试样及其纵剖面示意图
图3  两种合金完全热处理后的组织形貌
Alloys982℃/248 MPa1070℃/137 MPa
Stress rupture life / hElongation / %Stress rupture life / hElongation / %
8.0W+1.5Re2592824143
8.5W+1.0Re2513120745
表2  两种合金在不同条件下的持久性能数据
图4  在982℃/248 MPa条件下持久断裂后两种合金试样不同位置的组织形貌
图5  在1070℃/137 MPa条件下持久断裂后两种合金试样不同位置组织的形貌
AlloysAngles between stress axis and rafted γ′ phases / (°)
Location 1Location 2Location 3
8.0W+1.5Re103.4 (φ1)117.5 (φ2)128.7 (φ3)
8.5W+1.0Re101.6 (φ4)112.3 (φ5)124.6 (φ6)
表3  1070℃/137 MPa下断裂后应力轴与筏形γ'相夹角统计结果
图6  在982℃/248 MPa和1070℃/137 MPa条件下持久断裂后合金中的位错组态
图7  合金在982℃/248 MPa和1070℃/137 MPa条件下的主要持久变形机制示意图
图8  界面位错网组态及其形貌演化示意图
AlloysDislocation spacing / nm
982oC/248 MPa1070oC/137 MPa
8.0W+1.5Re10036
8.5W+1.0Re14045
表4  两种合金在不同条件下的界面位错网间距
图9  a<010>型超位错形成的示意图
Alloys982℃ / 248 MPa1070℃ / 137 MPa
τAPB / MPaτor / MPaτAPB / MPaτor / MPa
8.0W+1.5Re94.07194.8561.35102.87
8.5W+1.0Re91.86241.7564.63133.65
表5  两种合金在各条件下不同变形机制的临界切应力计算结果
1 Shang Z, Wei X P, Song D Z, et al. Microstructure and mechanical properties of a new nickel-based single crystal superalloy [J]. J. Mater. Res. Technol., 2020, 9(5): 11641
doi: 10.1016/j.jmrt.2020.08.032
2 Nowotnik A, Kubiak K, Sieniawski J, et al. Development of nickel based superalloys for advanced turbine engines [J]. Mater. Sci. Forum, 2014, 3129: 2491
3 Dong Z G, Wang M, Li X X, et al. Application and progress of materials for turbine blade of aeroengine [J]. J. Iron Steel Res., 2011, (suppl.) : 455
3 董志国, 王 鸣, 李晓欣 等. 航空发动机涡轮叶片材料的应用与发展 [J]. 钢铁研究学报, 2011, (): 455
4 Liu G, Liu L, Zhao X B, et al. Influence of refractory elements addition on solidification characteristics and microstructure of Ni-based single-crystal superalloys [J]. Mater. Rep., 2008, 22(9): 38
4 刘 刚, 刘 林, 赵新宝 等. 难熔元素对镍基单晶高温合金凝固特性及组织的影响 [J]. 材料导报, 2008, 22(9): 38
5 Acharya A, Fuchs G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys [J]. Mater. Sci. Eng. A, 2004, 381: 143
doi: 10.1016/j.msea.2004.04.001
6 Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy [J]. Acta Mater., 2020, 185: 233
doi: 10.1016/j.actamat.2019.12.014
7 Fleischmann E, Miller M K, Affeldt E, et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys [J]. Acta Mater., 2015, 87: 350
doi: 10.1016/j.actamat.2014.12.011
8 Razumovskii I M, Ruban A V, Razumovskiy V I, et al. New generation of Ni-based superalloys designed on the basis of first-principles calculations [J]. Mater. Sci. Eng. A, 2008, 497: 18
doi: 10.1016/j.msea.2008.08.013
9 Shmotin Y, Logunov A, Egorov I, et al. Computer simulation and optimization of chemical compositions of heat-resistant nickel superalloys [A]. PRICM: 8th Pacific Rim International Congress on Advanced Materials and Processing [C]. New York: John Wiley & Sons, Ltd, 2013: 2799
10 Shmotin Y, Logunov A, Danilov D, et al. Development of economically doped heat-resistant nickel single-crystal superalloys for blades of perspective gas turbine engines [A]. PRICM: 8th Pacific Rim International Congress on Advanced Materials and Processing [C]. New York: John Wiley & Sons, Ltd, 2013: 327
11 Shi Z X, Liu S Z, Wang X G, et al. Effect of solution cooling method on the microstructure and stress rupture properties of a single crystal superalloy [J]. Mater. Sci. Forum, 2015, 816: 513
doi: 10.4028/www.scientific.net/MSF.816
12 Heckl A, Neumeier S, Goken M, et al. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys [J]. Mater. Sci. Eng. A, 2011, 528(9): 3435
doi: 10.1016/j.msea.2011.01.023
13 Carroll L J, Feng Q, Pollock T M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys [J]. Metall. Mater. Trans. A, 2008, 39(6): 1290
doi: 10.1007/s11661-008-9520-7
14 Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53(17): 4623
doi: 10.1016/j.actamat.2005.06.013
15 Link T, Epishin A, Klaus M, et al. <100> Dislocations in nickel-base superalloys: Formation and role in creep deformation [J]. Mater. Sci. Eng. A, 2005, 405: 254
doi: 10.1016/j.msea.2005.06.001
16 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 89
16 郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 89
17 Wukusick C S, Buchakjian L. Property-balanced nickel-base superalloys for producing single crystal articles [P]. US Pat, 6074602, 2000.
18 Karunaratne M S A, Cox D C, Carter P, et al. Modeling of the microsegregation in CMSX-4 superalloy and its homogenization during heat treatment [C]. Superalloys 2000, Warrendale: TMS, 2000, 263
19 Wang G L. Coarsening kinetics of cubic γ′ precipitates during thermal exposure and stress rupture mechanical behavior of DD5 single crystal superalloy [D]. Shenyang: Northeastern University, 2015
19 王广磊. DD5单晶高温合金的长期时效和持久性能研究 [D]. 沈阳: 东北大学, 2015
20 Tan Z H. Study on microstructure and properties of a novel low-cost nickel-based single crystal superalloy [D]. Shenyang: Shenyang University of Technology, 2020
20 谭子昊. 一种新型低成本镍基单晶高温合金微观组织与性能研究 [D]. 沈阳: 沈阳工业大学, 2020
21 Zhang J X, Murakumo T, Koizumi Y, et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy [J]. Acta Mater., 2003, 51: 5073
doi: 10.1016/S1359-6454(03)00355-0
22 Field R D, Pollock T M, Murphy W H. The development of γ/γ′ interfacial dislocation networks during creep in Ni-base superalloys [A]. Superalloys 1992 [C]. Warrendale: The Minerals, Materials and Metals Society, 1992, 557
23 Boualy O, Clément N, Benyoucef M. Analysis of dislocation networks in crept single crystal nickel-base superalloy [J]. J. Mater. Sci., 2018, 53(4): 2892
doi: 10.1007/s10853-017-1699-9
24 Link T, Epishin A, Klaus M, et al. <100> Dislocations in nickel-based superalloys: Formation and role in creep deformation [J]. Mater. Sci. Eng. A, 2005, 405: 254
doi: 10.1016/j.msea.2005.06.001
25 Wang X G, Liu J L, Jin T, et al. Creep deformation related to dislocations cutting the gamma' phase of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng. A, 2015, 626: 406
doi: 10.1016/j.msea.2014.12.060
26 Yue Q Z, Liu L, Yang W C, et al. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 752
doi: 10.1016/j.jmst.2018.11.015
27 Cui L Q, Yu J J, Liu J L, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy [J]. Mater. Sci. Eng. A, 2018, 710: 309
doi: 10.1016/j.msea.2017.11.002
28 Zhang J X, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138 [J]. Scr. Mater., 2003, 48(3): 287
doi: 10.1016/S1359-6462(02)00379-2
29 Tian S G, Su Y, Qian B J. et al. Creep behavior of a single crystal nickel-based superalloy containing 4.2%Re [J]. Mater. Des., 2012, 37(1): 236
doi: 10.1016/j.matdes.2012.01.008
30 Xu K, Wang G L, Liu J D, et al. Creep behavior and a deformation mechanism based creep rate model under high temperature and low stress condition for single crystal superalloy DD5 [J]. Mater. Sci. Eng. A, 2020, 786: 139414
doi: 10.1016/j.msea.2020.139414
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.