Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 871-880    DOI: 10.11901/1005.3093.2022.669
  研究论文 本期目录 | 过刊浏览 |
Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能
孙玉伟1,2, 陈畴1, 祁昕1, 任楚奇1, 汤茜1,2, 滕洪辉1,2(), 任百祥1,2
1.吉林师范大学工程学院 四平 136000
2.吉林省高校环境材料与污染控制重点实验室 四平 136000
Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)
SUN Yuwei1,2, CHEN Chou1, QI Xin1, REN Chuqi1, TANG Qian1,2, TENG Honghui1,2(), REN Baixiang1,2
1.College of Engineering, Jilin Normal University, Siping 136000, China
2.Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
引用本文:

孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
Yuwei SUN, Chou CHEN, Xin QI, Chuqi REN, Qian TANG, Honghui TENG, Baixiang REN. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. Chinese Journal of Materials Research, 2023, 37(11): 871-880.

全文: PDF(7889 KB)   HTML
摘要: 

将Ag3PO4纳米颗粒原位沉积在圆饼状MIL-125(Ti)的表面制备出Ag3PO4/MIL125(Ti) Z型异质结光催化剂,分别用XRD、SEM、EDS、UV-vis、FTIR、EIS和PL等手段表征其晶相结构、形貌特征、光吸收性能、价带结构和电荷分离效率,研究了在模拟太阳光照射下Ag3PO4沉积量不同的Ag3PO4/MIL125(Ti)光催化剂还原Cr(Ⅵ)的性能,以及在光催化过程中初始溶液的pH值和催化剂投加量等的影响。结果表明,Ag3PO4的沉积有效提高了MIL-125(Ti)光催化还原性能。Cr(VI)溶液初始浓度为10 mg/L、pH为2时,Ag3PO4/MIL-125(Ti)-2对Cr(VI)的还原率可以达到96.9%。带隙结构计算和自由基捕获实验的结果表明, Ag3PO4/MIL-125(Ti)中的光生载流子符合Z型转移机制。

关键词 无机非金属材料MIL-125(Ti)Ag3PO4Z型异质结光催化还原Cr(VI)    
Abstract

A composite of Z-scheme Ag3PO4/MIL-125(Ti) heterojunction was synthesized by loading Ag3PO4 nano particles on the surface of round-shaped MIL-125(Ti). The Ag3PO4/MIL-125(Ti) composite can effectively improve the utilization of light and charge separation efficiency. The crystal-structure, morphology, optical absorption, valence band structure and charge separation efficiency of the prepared Ag3PO4/MIL-125(Ti) composite were characterized by XRD、SEM、EDS、UV-vis、FTIR、EIS and PL testing methods. Under a simulated solar irradiation, the performance of Cr(VI) reduction by Ag3PO4/MIL125(Ti) composite with different deposition amounts of Ag3PO4 was studied. Furthermore, the effect of solution pH and catalyst dosage in the photocatalytic reduction process was also discussed. The photocatalytic test results indicated that the deposition of Ag3PO4 effectively improved the photocatalytic reduction performance of MIL-125(Ti). When the concentration of Cr(VI) solution was 10mg/L and pH was 2, the reduction rate of Cr(VI) by Ag3PO4/MIL-125(Ti)-2 could reach to 96.9%. The results of bandgap structure calculation and free radical trapping experiments show that photon-generated carriers in Ag3PO4/MIL-125(Ti) are conformed to Z-scheme mechanism.

Key wordsinorganic non-metallic materials    MIL-125 (Ti)    Ag3PO4    Z-scheme heterojunction    photocatalytic    reduction of Cr(VI)
收稿日期: 2022-12-19     
ZTFLH:  X703.1  
基金资助:吉林省科技厅项目(YDZJ202201ZYTS368);吉林省科技厅项目(20210101391JC);吉林省教育厅项目(JJKH20220451KJ);吉林省教育厅项目(JJKH20230517KJ)
通讯作者: 滕洪辉,教授,hhteng2022@163.com,研究方向为工业废水处理
Corresponding author: TENG Honghui, Tel: 13944400855, E-mail: hhteng2022@163.com
作者简介: 孙玉伟,女,1986年生,副教授,博士
图1  不同样品的XRD谱
图2  不同样品的SEM形貌和Ag3PO4/MIL125(Ti)-2的EDS能谱
图3  不同样品的紫外-可见漫反射光谱、(αhv)1/2与hv的曲线、MIL-125(Ti)和Ag3PO4的VB谱以及MIL125(Ti)和Ag3PO4的能带结构
图4  不同样品的红外光谱
图5  不同样品的EIS谱和PL光谱
图6  不同样品光催化还原性能和光催化还原Cr(VI)的一级动力学曲线
图7  不同初始pH值对光催剂还原性能的影响、不同投加量对光催剂还原性能的影响以及不同有机酸对光催化剂还原性能的影响
Catalyst and dosage /mg·L-1

Pollutants

/ mg·L-1

IrradiationpHEfficiency /%Ref.
Pt/MIL-125-NH2/1000Cr(VI)/15300 W Xe lamp675.0% (120 min)[40]
Bi2S3@NH2-MIL-125(Ti)/100Cr(VI)/10300 W Xe lamp777.0% (120 min)[41]
CdS/MIL-125(Ti)/500Cr(VI)/48300 W Xe lamp(cut~420 nm)635.0% (70 min)[42]
Pd@MIL-101/1000Cr(VI)/10125 W light pressure mercury lamp646.4% (240 min)[43]
MIL-125-derived TiO2@C/300Cr(VI)/5361.8% (90 min)[44]
Ag3PO4/MIL-125(Ti)-2Cr(VI)/10300 W Xe lamp677.6% (90 min)This work
Ag3PO4/MIL-125(Ti)-2Cr(VI)/10300 W Xe lamp296.9% (90 min)This work
表1  不同MOFs基光催化剂去除Cr(VI)活性的比较
图8  光催化循环性能和光催化反应前后Ag3PO4/MIL-125(Ti)-2的XRD谱
图9  活性物种的捕获性能
图10  Ag3PO4/MIL-125(Ti)的光催化还原Cr(VI)机制
1 Li Y X, WANG X, WANG C C, et al. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light [J]. J. Hazaed. Mater., 2020, 399: 123085
2 Ma J, Chen K Z. Designing porous nickel architectures for adsorptive removal of Cr(VI) to achieve drinking water standard [J]. Sep. Purif. Technol., 2020, 241: 116705
doi: 10.1016/j.seppur.2020.116705
3 Zhang L X, Li P, Feng L P, et al. Controllable fabrication of visible-light-driven CoS x /CdS photocatalysts with direct Z-scheme heterojunctions for photocatalytic Cr(VI) reduction with high efficiency [J]. Chem. Eng. J., 2020, 397: 125464
doi: 10.1016/j.cej.2020.125464
4 Wang M, Zeng Y B, Dong G H, et al. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction [J]. Chin. J. Catal., 2020, 41(10): 1498
doi: 10.1016/S1872-2067(19)63435-2
5 Hu Q S, Di J, Wang B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity [J]. Appl. Surf. Sci., 2019, 466: 525
doi: 10.1016/j.apsusc.2018.10.020
6 Guo J Y, Fu Y J, Zhang K J, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction [J]. Acta Mater. Compos. Sin, 2023, 40: 904
6 郭佳允, 傅炀杰, 张柯杰 等. g-C3N4/POPs异质结制备及其可见光催化性能 [J]. 复合材料学报, 2023, 40: 904
7 Haroon H, Majid K. MnO2 nanosheets supported metal-organic framework MIL-125(Ti) towards efficient visible light photocatalysis: Kinetic and mechanistic study [J]. Chem. Phys. Lett., 2020, 745: 137283
doi: 10.1016/j.cplett.2020.137283
8 Zhang X Y, Zhang Q Y, Tang T, et al. Fabrication of composite material based on MOFs and its adsorption properties for methylene blue dyes [J]. Chin. J. Mater. Res., 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
8 张向阳, 章奇羊, 汤 涛 等. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能 [J]. 材料研究学报, 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
9 Yue K, Zhang X D, Jiang S T, et al. Recent advances in strategies to modify MIL-125(Ti) and its environmental applications [J]. J. Mol. Liq., 2021, 335: 116108
doi: 10.1016/j.molliq.2021.116108
10 Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti) [J]. J. Photoch. Photobio., 2018, 364A: 524
11 Cui W C, Shang J P, Bai H Y, et al. In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode [J]. Chem. Eng. J., 2020, 388: 124206
doi: 10.1016/j.cej.2020.124206
12 Abdelhameed R M, Abu-Elghait M, El-Shahat M. Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): Enhancement the biological and visible-light photocatalytic activity [J]. J. Environ. Chem. Eng., 2020, 8(5): 104107
doi: 10.1016/j.jece.2020.104107
13 Wang Z C, Liu Y, Li J H, et al. Efficient immobilization of enzymes on amino functionalized MIL-125-NH2 metal organic framework [J]. Biotechnol. Bioproc. Eng., 2022, 27(1): 135
doi: 10.1007/s12257-020-0393-y
14 Xu Y F, Zhou Y, Deng Y H, et al. Synthesis of Bi2WO6@NH2-MIL-125(Ti): A S-scheme photocatalyst with enhanced visible light catalytic activity [J]. Catal. Lett., 2020, 150(12): 3470
doi: 10.1007/s10562-020-03258-0
15 Li Y X, Wang C C, Fu H F, et al. Marigold-flower-like TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction [J]. J. Environ. Chem. Eng., 2021, 9(4): 105451
doi: 10.1016/j.jece.2021.105451
16 Hu Q S, Yin S, Chen Y, et al. Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity [J]. Colloids Surf., 2020, 585A: 124078
17 Han L, Zhang X M, Wu D Y. MoS2 quantum dots decorated NH2-MIL-125 heterojunction: preparation and visible light photocatalytic performance [J]. J. Inorg. Mater., 2019, 34(11): 1205
17 韩 丽, 张晓敏, 吴德勇. 具有可见光催化活性的MoS2量子点/NH2-MIL-125复合材料的制备及性能表征 [J]. 无机材料学报, 2019, 34(11): 1205
18 Promnopas S, Promnopas W, Maisang W, et al. One-step microwave-hydrothermal synthesis of visible-light-driven Ag3PO4/LaPO4 photocatalyst induced by visible light irradiation [J]. Chem. Phys. Lett., 2021, 779: 138883
doi: 10.1016/j.cplett.2021.138883
19 Cui C, Wang Y P, Liang D Y, et al. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light [J]. Appl. Catal., 2014, 158-159B: 150
20 Liu J H, Li X, Liu F, et al. The stabilization effect of surface capping on photocatalytic activity and recyclable stability of Ag3PO4 [J]. Catal. Commun., 2014, 46: 138
doi: 10.1016/j.catcom.2013.12.005
21 Sofi F A, Majid K. Enhancement of the photocatalytic performance and thermal stability of an iron based metal–organic-framework functionalised by Ag/Ag3PO4 [J]. Mater. Chem. Front., 2018, 2: 942
doi: 10.1039/C8QM00051D
22 Zhou T H, Zhang G Z, Zhang H W, et al. Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3PO4/MIL-101/NiFe2O4 composite [J]. Catal. Sci. Technol., 2018, 8: 2402
doi: 10.1039/C8CY00182K
23 Liang Y H, Shang R, Lu J R, et al. Ag3PO4@UMOFNs core–shell structure: two-dimensional MOFs promoted photoinduced charge separation and Photocatalysis [J]. ACS Appl. Mater. Interfaces, 2018, 10: 8758
doi: 10.1021/acsami.8b00198
24 Han X, Yang X B, Liu G B, et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti) [J]. Chem. Eng. Res. Des., 2019, 143: 90
doi: 10.1016/j.cherd.2019.01.010
25 Liu L, Ding L, Liu Y G, et al. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation [J]. Appl. Catal., 2017, 201B: 92
26 Xie L C, Yang Z H, Xiong W P, et al. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation [J]. Appl. Surf. Sci., 2019, 465: 103
doi: 10.1016/j.apsusc.2018.09.144
27 Hu Z, He Q B, Ge M. Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites: a comparative study and a new insight into mechanism [J]. J. Mater. Sci. Mater. Electron., 2021, 32(1): 827
doi: 10.1007/s10854-020-04861-y
28 Yang X M, Gu W H, Ma Y W, et al. Interface electron transfer of Bi2MoO6/MIL-125 and the visible-light performance for pollutant degradation [J]. Colloids Surf., 2020, 597A: 124748
29 Abdelhameed R M, Simões M M Q, Silva A M S, et al. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles [J]. Chem. Eur. J., 2015, 21(31): 11072
doi: 10.1002/chem.v21.31
30 George P, Chowdhury P. NH2-MIL-125(Ti) and its emeraldine functionalized derivative as a chemical sensor for effective detection of dopamine [J]. Micropor. Mesopor. Mat., 2019, 288: 109591
doi: 10.1016/j.micromeso.2019.109591
31 Zhu S R, Liu R F, Wu M K, et al. Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light [J]. Dalton Trans., 2016, 45(43): 17521
doi: 10.1039/C6DT02912D
32 Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer [J]. Chem. Eng. J., 2020, 382: 122840
doi: 10.1016/j.cej.2019.122840
33 Lv Y H, Liu H Y, Jin D X, et al. Effective degradation of norfloxacin on Ag3PO4/CNTs photoanode: Z-scheme mechanism, reaction pathway, and toxicity assessment [J]. Chem. Eng. J., 2022, 429: 132092
doi: 10.1016/j.cej.2021.132092
34 Wang F H, Liu X Z, Xu L, et al. One-pot synthesis of CeO2/Mg-Al layered double oxide nanosheets for efficient visible-light induced photo-reduction of Cr(VI) [J]. Colloids Surf., 2020, 601A: 125044
35 Deng Y C, Tang L, Zeng G M, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism [J]. Appl. Catal., 2017, 203B: 343
36 Ma N, Qiu Y W, Zhang Y C, et al. Reduced graphene oxide enwrapped pinecone-liked Ag3PO4/TiO2 composites with enhanced photocatalytic activity and stability under visible light [J]. J. Alloys Compd., 2015, 648: 818
doi: 10.1016/j.jallcom.2015.07.070
37 Yu C F, Yang P Y, Tie L N, et al. One-pot fabrication of β-Bi2O3@Bi2S3 hierarchical hollow spheres with advanced sunlight photocatalytic RhB oxidation and Cr(VI) reduction activities [J]. Appl. Surf. Sci., 2018, 455: 8
doi: 10.1016/j.apsusc.2018.04.201
38 Song X L, Wang Y, Zhu T, et al. Facile synthesis a novel core-shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light [J]. Chem. Eng. J., 2021, 416: 129126
doi: 10.1016/j.cej.2021.129126
39 Yi X H, Wang F X, Du X D, et al. Facile fabrication of BUC-21/g-C3N4 composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight [J]. Appl. Organomet. Chem., 2019, 33: e4621
doi: 10.1002/aoc.v33.1
40 Qiu J H, Yang L Y, Li M, et al. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis [J]. Mater. Res. Bull., 2019, 112: 297
doi: 10.1016/j.materresbull.2018.12.038
41 Wang M H, Yang L Y, Yuan J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light [J]. RSC Adv., 2018, 8: 12459
doi: 10.1039/C8RA00882E
42 Wang H, Yuan X Z, Wu Y, et al. Photodeposition of metal sulfides on titanium metal-organic frameworks for excellent visible-light-driven photocatalytic Cr(vi) reduction [J]. RSC Adv., 2015, 5: 32531
doi: 10.1039/C5RA01283J
43 Liu S J, Zhou X F, Wei C H, et al. Spatial directional separation and synergetic treatment of Cr(VI) and Rhodamine B mixed pollutants on three-layered Pd@MIL-101/P25 photocatalyst [J]. Sci. Total. Environ., 2022, 842: 156836
doi: 10.1016/j.scitotenv.2022.156836
44 Gao K, Chen J, Liu Z, et al. Intensified redox co-conversion of As(III) and Cr(VI) with MIL-125(Ti)-derived COOH functionalized TiO2: performance and mechanism [J]. Chem. Eng. J., 2019, 360: 1223
doi: 10.1016/j.cej.2018.09.134
45 Shi C, Qi H J, Sun Z, et al. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB [J]. J. Mater. Chem., 2020, 8C: 2238
46 Meng X F, Zhuang Y, Tang H, et al. Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity [J]. J. Alloys Compd., 2018, 761: 15
doi: 10.1016/j.jallcom.2018.05.150
47 Wang Y H, Kang C L, Li X Y, et al. Ag NPs decorated C-TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction [J]. Environ. Pollut., 2021, 286: 117305
doi: 10.1016/j.envpol.2021.117305
48 Wang J C, Ren J, Yao H C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation [J]. J. Hazard. Mater., 2016, 311: 11
doi: 10.1016/j.jhazmat.2016.02.055
49 Hu X F, Ji H H, Chang F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation [J]. Catal. Today, 2014, 224: 34
doi: 10.1016/j.cattod.2013.11.038
50 Yi X H, Ma S Q, Du X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light [J]. Chem. Eng. J., 2019, 375: 121944
doi: 10.1016/j.cej.2019.121944
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[9] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.