|
|
Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能 |
孙玉伟1,2, 陈畴1, 祁昕1, 任楚奇1, 汤茜1,2, 滕洪辉1,2( ), 任百祥1,2 |
1.吉林师范大学工程学院 四平 136000 2.吉林省高校环境材料与污染控制重点实验室 四平 136000 |
|
Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI) |
SUN Yuwei1,2, CHEN Chou1, QI Xin1, REN Chuqi1, TANG Qian1,2, TENG Honghui1,2( ), REN Baixiang1,2 |
1.College of Engineering, Jilin Normal University, Siping 136000, China 2.Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China |
引用本文:
孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
Yuwei SUN,
Chou CHEN,
Xin QI,
Chuqi REN,
Qian TANG,
Honghui TENG,
Baixiang REN.
Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. Chinese Journal of Materials Research, 2023, 37(11): 871-880.
1 |
Li Y X, WANG X, WANG C C, et al. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light [J]. J. Hazaed. Mater., 2020, 399: 123085
|
2 |
Ma J, Chen K Z. Designing porous nickel architectures for adsorptive removal of Cr(VI) to achieve drinking water standard [J]. Sep. Purif. Technol., 2020, 241: 116705
doi: 10.1016/j.seppur.2020.116705
|
3 |
Zhang L X, Li P, Feng L P, et al. Controllable fabrication of visible-light-driven CoS x /CdS photocatalysts with direct Z-scheme heterojunctions for photocatalytic Cr(VI) reduction with high efficiency [J]. Chem. Eng. J., 2020, 397: 125464
doi: 10.1016/j.cej.2020.125464
|
4 |
Wang M, Zeng Y B, Dong G H, et al. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction [J]. Chin. J. Catal., 2020, 41(10): 1498
doi: 10.1016/S1872-2067(19)63435-2
|
5 |
Hu Q S, Di J, Wang B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity [J]. Appl. Surf. Sci., 2019, 466: 525
doi: 10.1016/j.apsusc.2018.10.020
|
6 |
Guo J Y, Fu Y J, Zhang K J, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction [J]. Acta Mater. Compos. Sin, 2023, 40: 904
|
6 |
郭佳允, 傅炀杰, 张柯杰 等. g-C3N4/POPs异质结制备及其可见光催化性能 [J]. 复合材料学报, 2023, 40: 904
|
7 |
Haroon H, Majid K. MnO2 nanosheets supported metal-organic framework MIL-125(Ti) towards efficient visible light photocatalysis: Kinetic and mechanistic study [J]. Chem. Phys. Lett., 2020, 745: 137283
doi: 10.1016/j.cplett.2020.137283
|
8 |
Zhang X Y, Zhang Q Y, Tang T, et al. Fabrication of composite material based on MOFs and its adsorption properties for methylene blue dyes [J]. Chin. J. Mater. Res., 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
|
8 |
张向阳, 章奇羊, 汤 涛 等. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能 [J]. 材料研究学报, 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
|
9 |
Yue K, Zhang X D, Jiang S T, et al. Recent advances in strategies to modify MIL-125(Ti) and its environmental applications [J]. J. Mol. Liq., 2021, 335: 116108
doi: 10.1016/j.molliq.2021.116108
|
10 |
Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti) [J]. J. Photoch. Photobio., 2018, 364A: 524
|
11 |
Cui W C, Shang J P, Bai H Y, et al. In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode [J]. Chem. Eng. J., 2020, 388: 124206
doi: 10.1016/j.cej.2020.124206
|
12 |
Abdelhameed R M, Abu-Elghait M, El-Shahat M. Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): Enhancement the biological and visible-light photocatalytic activity [J]. J. Environ. Chem. Eng., 2020, 8(5): 104107
doi: 10.1016/j.jece.2020.104107
|
13 |
Wang Z C, Liu Y, Li J H, et al. Efficient immobilization of enzymes on amino functionalized MIL-125-NH2 metal organic framework [J]. Biotechnol. Bioproc. Eng., 2022, 27(1): 135
doi: 10.1007/s12257-020-0393-y
|
14 |
Xu Y F, Zhou Y, Deng Y H, et al. Synthesis of Bi2WO6@NH2-MIL-125(Ti): A S-scheme photocatalyst with enhanced visible light catalytic activity [J]. Catal. Lett., 2020, 150(12): 3470
doi: 10.1007/s10562-020-03258-0
|
15 |
Li Y X, Wang C C, Fu H F, et al. Marigold-flower-like TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction [J]. J. Environ. Chem. Eng., 2021, 9(4): 105451
doi: 10.1016/j.jece.2021.105451
|
16 |
Hu Q S, Yin S, Chen Y, et al. Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity [J]. Colloids Surf., 2020, 585A: 124078
|
17 |
Han L, Zhang X M, Wu D Y. MoS2 quantum dots decorated NH2-MIL-125 heterojunction: preparation and visible light photocatalytic performance [J]. J. Inorg. Mater., 2019, 34(11): 1205
|
17 |
韩 丽, 张晓敏, 吴德勇. 具有可见光催化活性的MoS2量子点/NH2-MIL-125复合材料的制备及性能表征 [J]. 无机材料学报, 2019, 34(11): 1205
|
18 |
Promnopas S, Promnopas W, Maisang W, et al. One-step microwave-hydrothermal synthesis of visible-light-driven Ag3PO4/LaPO4 photocatalyst induced by visible light irradiation [J]. Chem. Phys. Lett., 2021, 779: 138883
doi: 10.1016/j.cplett.2021.138883
|
19 |
Cui C, Wang Y P, Liang D Y, et al. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light [J]. Appl. Catal., 2014, 158-159B: 150
|
20 |
Liu J H, Li X, Liu F, et al. The stabilization effect of surface capping on photocatalytic activity and recyclable stability of Ag3PO4 [J]. Catal. Commun., 2014, 46: 138
doi: 10.1016/j.catcom.2013.12.005
|
21 |
Sofi F A, Majid K. Enhancement of the photocatalytic performance and thermal stability of an iron based metal–organic-framework functionalised by Ag/Ag3PO4 [J]. Mater. Chem. Front., 2018, 2: 942
doi: 10.1039/C8QM00051D
|
22 |
Zhou T H, Zhang G Z, Zhang H W, et al. Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3PO4/MIL-101/NiFe2O4 composite [J]. Catal. Sci. Technol., 2018, 8: 2402
doi: 10.1039/C8CY00182K
|
23 |
Liang Y H, Shang R, Lu J R, et al. Ag3PO4@UMOFNs core–shell structure: two-dimensional MOFs promoted photoinduced charge separation and Photocatalysis [J]. ACS Appl. Mater. Interfaces, 2018, 10: 8758
doi: 10.1021/acsami.8b00198
|
24 |
Han X, Yang X B, Liu G B, et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti) [J]. Chem. Eng. Res. Des., 2019, 143: 90
doi: 10.1016/j.cherd.2019.01.010
|
25 |
Liu L, Ding L, Liu Y G, et al. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation [J]. Appl. Catal., 2017, 201B: 92
|
26 |
Xie L C, Yang Z H, Xiong W P, et al. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation [J]. Appl. Surf. Sci., 2019, 465: 103
doi: 10.1016/j.apsusc.2018.09.144
|
27 |
Hu Z, He Q B, Ge M. Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites: a comparative study and a new insight into mechanism [J]. J. Mater. Sci. Mater. Electron., 2021, 32(1): 827
doi: 10.1007/s10854-020-04861-y
|
28 |
Yang X M, Gu W H, Ma Y W, et al. Interface electron transfer of Bi2MoO6/MIL-125 and the visible-light performance for pollutant degradation [J]. Colloids Surf., 2020, 597A: 124748
|
29 |
Abdelhameed R M, Simões M M Q, Silva A M S, et al. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles [J]. Chem. Eur. J., 2015, 21(31): 11072
doi: 10.1002/chem.v21.31
|
30 |
George P, Chowdhury P. NH2-MIL-125(Ti) and its emeraldine functionalized derivative as a chemical sensor for effective detection of dopamine [J]. Micropor. Mesopor. Mat., 2019, 288: 109591
doi: 10.1016/j.micromeso.2019.109591
|
31 |
Zhu S R, Liu R F, Wu M K, et al. Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light [J]. Dalton Trans., 2016, 45(43): 17521
doi: 10.1039/C6DT02912D
|
32 |
Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer [J]. Chem. Eng. J., 2020, 382: 122840
doi: 10.1016/j.cej.2019.122840
|
33 |
Lv Y H, Liu H Y, Jin D X, et al. Effective degradation of norfloxacin on Ag3PO4/CNTs photoanode: Z-scheme mechanism, reaction pathway, and toxicity assessment [J]. Chem. Eng. J., 2022, 429: 132092
doi: 10.1016/j.cej.2021.132092
|
34 |
Wang F H, Liu X Z, Xu L, et al. One-pot synthesis of CeO2/Mg-Al layered double oxide nanosheets for efficient visible-light induced photo-reduction of Cr(VI) [J]. Colloids Surf., 2020, 601A: 125044
|
35 |
Deng Y C, Tang L, Zeng G M, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism [J]. Appl. Catal., 2017, 203B: 343
|
36 |
Ma N, Qiu Y W, Zhang Y C, et al. Reduced graphene oxide enwrapped pinecone-liked Ag3PO4/TiO2 composites with enhanced photocatalytic activity and stability under visible light [J]. J. Alloys Compd., 2015, 648: 818
doi: 10.1016/j.jallcom.2015.07.070
|
37 |
Yu C F, Yang P Y, Tie L N, et al. One-pot fabrication of β-Bi2O3@Bi2S3 hierarchical hollow spheres with advanced sunlight photocatalytic RhB oxidation and Cr(VI) reduction activities [J]. Appl. Surf. Sci., 2018, 455: 8
doi: 10.1016/j.apsusc.2018.04.201
|
38 |
Song X L, Wang Y, Zhu T, et al. Facile synthesis a novel core-shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light [J]. Chem. Eng. J., 2021, 416: 129126
doi: 10.1016/j.cej.2021.129126
|
39 |
Yi X H, Wang F X, Du X D, et al. Facile fabrication of BUC-21/g-C3N4 composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight [J]. Appl. Organomet. Chem., 2019, 33: e4621
doi: 10.1002/aoc.v33.1
|
40 |
Qiu J H, Yang L Y, Li M, et al. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis [J]. Mater. Res. Bull., 2019, 112: 297
doi: 10.1016/j.materresbull.2018.12.038
|
41 |
Wang M H, Yang L Y, Yuan J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light [J]. RSC Adv., 2018, 8: 12459
doi: 10.1039/C8RA00882E
|
42 |
Wang H, Yuan X Z, Wu Y, et al. Photodeposition of metal sulfides on titanium metal-organic frameworks for excellent visible-light-driven photocatalytic Cr(vi) reduction [J]. RSC Adv., 2015, 5: 32531
doi: 10.1039/C5RA01283J
|
43 |
Liu S J, Zhou X F, Wei C H, et al. Spatial directional separation and synergetic treatment of Cr(VI) and Rhodamine B mixed pollutants on three-layered Pd@MIL-101/P25 photocatalyst [J]. Sci. Total. Environ., 2022, 842: 156836
doi: 10.1016/j.scitotenv.2022.156836
|
44 |
Gao K, Chen J, Liu Z, et al. Intensified redox co-conversion of As(III) and Cr(VI) with MIL-125(Ti)-derived COOH functionalized TiO2: performance and mechanism [J]. Chem. Eng. J., 2019, 360: 1223
doi: 10.1016/j.cej.2018.09.134
|
45 |
Shi C, Qi H J, Sun Z, et al. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB [J]. J. Mater. Chem., 2020, 8C: 2238
|
46 |
Meng X F, Zhuang Y, Tang H, et al. Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity [J]. J. Alloys Compd., 2018, 761: 15
doi: 10.1016/j.jallcom.2018.05.150
|
47 |
Wang Y H, Kang C L, Li X Y, et al. Ag NPs decorated C-TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction [J]. Environ. Pollut., 2021, 286: 117305
doi: 10.1016/j.envpol.2021.117305
|
48 |
Wang J C, Ren J, Yao H C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation [J]. J. Hazard. Mater., 2016, 311: 11
doi: 10.1016/j.jhazmat.2016.02.055
|
49 |
Hu X F, Ji H H, Chang F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation [J]. Catal. Today, 2014, 224: 34
doi: 10.1016/j.cattod.2013.11.038
|
50 |
Yi X H, Ma S Q, Du X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light [J]. Chem. Eng. J., 2019, 375: 121944
doi: 10.1016/j.cej.2019.121944
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|