Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 554-560    DOI: 10.11901/1005.3093.2022.445
  研究论文 本期目录 | 过刊浏览 |
SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响
刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲()
河北大学物理科学与技术学院 保定 071002
Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells
LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling()
School of Physical Sciences and Technology, Hebei University, Baoding 071002, China
引用本文:

刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
Mingzhu LIU, Rao FAN, Xiaoyu ZHANG, Zeyuan MA, Chengyang LIANG, Ying CAO, Shitong GENG, Ling LI. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. Chinese Journal of Materials Research, 2023, 37(7): 554-560.

全文: PDF(6137 KB)   HTML
摘要: 

先用一步水热法合成空心纳米球,再将其作为量子点敏化太阳能电池(QDSSCs)光阳极的散射层材料用丝网印刷技术刮涂在TiO2基底上。组装成的QDSSCs电池具有优异的电化学性能,表明SnO2的空心球结构有利于电解质的存储,在保证电子高效传输速率的同时提高其化学稳定性,使循环反应更加有效。在QDSSCs的制备过程中,以ZnCuInSe量子点为敏化剂,进一步研究了吸附量子点后不同膜厚的光阳极对太阳能电池光电性能的影响。膜厚为9 μm的SnO2散射层其最高光电转换效率值7.31%,可应用在QDSSCs中。

关键词 无机非金属材料量子点敏化太阳能电池丝网印刷技术SnO2散射层光阳极膜厚电化学特性    
Abstract

To search superior photoanode materials for further enhancing the cell performance of quantum dot-sensitized solar cells (QDSSCs), the zero-dimensional SnO2 may be a good option for its excellent cycling stability, high mobility and bandgap tunability. For this purpose, hollow nanospheres of SnO2, as the candidate material for scattering layer of the photoanode were synthesized by a simple one-step hydrothermal method, and then screen-printed on the TiO2 substrate to produce a photoanode for quantum dot sensitized solar cells (QDSSCs), which showed excellent electrochemical performance. It is demonstrated that the hollow sphere structure of SnO2 facilitates the storage of electrolytes and improves its chemical stability while ensuring an efficient electron transfer rate, allowing the cyclic reaction to proceed more efficiently. ZnCuInSe quantum dots were used as sensitizers for the preparation of QDSSCs. Thus it is meaningfull to investigate the effect of photoanodes with different thickness of TiO2 films printed with quantum dots on the photovoltaic performance of solar cells. Several sets of test results show that when the thickness of the SnO2 scattering layer is 9 μm, the photoelectric conversion efficiency reaches a maximum value of 7.31%. This opens up the possibility of using SnO2 in QDSSCs.

Key wordsinorganic non-metallic materials    quantum dot-sensitized solar cells    screen printing techniques    SnO2 scattering layer    film thickness of the photoanode    electrochemical characteristics
收稿日期: 2022-08-18     
ZTFLH:  TQ152  
基金资助:国家自然科学基金(51772073);河北省自然科学基金(E2020201030);京津冀协同创新共同体建设专项(21344301D);河北大学2022年大学生创新创业计划训练(2022169);河北大学2022年大学生创新创业计划训练(2022165);河北大学2022年大学生创新创业计划训练(2022170)
通讯作者: 李玲,教授,lilinghbu@163.com,研究方向为多功能纳米光电材料与器件
Corresponding author: LI Ling, Tel: 18733255796, E-mail: lilinghbu@163.com
作者简介: 刘明珠,女,1997年生,硕士生
图1  SnO2纳米球的制备流程
图2  SnO2材料的SEM图、SnO2材料的TEM照片以及SnO2材料的示意性模型
图3  SnO2材料的XRD谱
图4  无散射层TiO2膜和有散射层TiO2-SnO2膜的紫外-可见吸收(UV-Vis)光谱
SampleVoc / VJsc / mA·cm-2FFPCE / %
15 μm TiO20.548±0.1521.48±0.130.536.18
15 μm TiO2-6 μm SnO20.509±0.0721.83±0.020.566.23
15 μm TiO2-9 μm SnO20.522±0.1023.26±0.070.607.34
15 μm TiO2-12 μm SnO20.511±0.1222.78±0.140.596.87
15 μm TiO2-9 μm SnO2-Solid0.595±0.0820.94±0.110.566.98
表1  不同膜厚的光阳极散射层的光伏性能参数
图5  光电性能分析示意图
SampleRs / Ω·cm2Rrec / Ω·cm2Cμ / mF·cm-2τn / ms
15 μm TiO24.661531.70.10857.42
15 μm TiO2-6 μm SnO24.341813.10.127103.26

15 μm TiO2-9 μm SnO2

15 μm TiO2-12 μm SnO2

3.091

3.936

1030

914.3

0.168

0.141

173.04

128.92

表2  不同膜厚光阳极散射层的EIS性能参数
1 Zaban A, MićićO I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14: 3153
doi: 10.1021/la9713863
2 Zhou B, Li Y Y, Zou Y Q, et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading [J]. Angew. Chem. Int. Ed., 2021, 60: 22908
doi: 10.1002/anie.v60.42
3 Ramya M, Nideep T K, Nampoori V P N, et al. The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study [J]. J. Mater. Sci: Mater. Electron., 2021, 32: 3167
doi: 10.1007/s10854-020-05065-0
4 Peng Y C, Fu G S. Approach to quantum dot solar cells [J]. Chin. J. Mater. Res., 2009, 23: 449
4 彭英才, 傅广生. 量子点太阳电池的探索 [J]. 材料研究学报, 2009, 23: 449
5 Xiong T H, Cai W H, Miao Y, et al. Simultaneous epitaxy growth and photoelectrochemical performance of ZnO nanorod arrays and films [J]. Chin. J. Mater. Res., 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
5 熊庭辉, 蔡文汉, 苗 雨 等. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能 [J]. 材料研究学报, 2022, 36: 481
doi: 10.11901/1005.3093.2021.149
6 Song B, Cheng K, Wu C, et al. Synthesis and their optical characterizations of CdS quantum dots [J]. Chin. J. Mater. Res., 2009, 23: 89
6 宋 冰, 程 珂, 武 超 等. CdS量子点的制备和光学性质 [J]. 材料研究学报, 2009, 23: 89
7 Chen G Z, Chen P, Xu D W, et al. Preparation and microwave absorbtion performance of composite hollow carbon/Fe3O4 magnetic quantum dots [J]. Chin. J. Mater. Res., 2022, 36: 29
7 陈冠震, 陈 平, 徐东卫 等. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能 [J]. 材料研究学报, 2022, 36: 29
doi: 10.11901/1005.3093.2021.334
8 Archana T, Sreelekshmi S, Subashini G, et al. The effect of graphene quantum dots/ZnS co-passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells [J]. Int. J. Energy Res., 2021, 45: 15879
doi: 10.1002/er.v45.11
9 Du Z L, Pan Z X, Fabregat-Santiago F, et al. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11% [J]. J. Phys. Chem. Lett., 2016, 7: 3103
doi: 10.1021/acs.jpclett.6b01356 pmid: 27455143
10 Elibol E. Design of CdSe x S1- x /ZnS quantum dot sensitized solar cell [J]. AIP Conf. Proc., 2022, 2440: 030007
11 Zhang J J, Wang L X, Jiang C H, et al. CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells [J]. Adv. Sci., 2021, 8: 2102648
doi: 10.1002/advs.v8.21
12 Ou J H, Hu B N, Wang W, et al. Transparent MSe2@N-doped carbon film as a cathode for Co(Ⅲ/Ⅱ)-mediated bifacial dye-sensitized solar cells [J]. Chin. J. Mater. Res., 2020, 34: 683
12 欧金花, 胡波年, 王 薇 等. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC [J]. 材料研究学报, 2020, 34: 683
doi: 10.11901/1005.3093.2020.044
13 Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production [J]. Acta Phys.-Chim. Sin., 2016, 32: 1556
doi: 10.3866/PKU.WHXB201604291
13 常进法, 肖 瑶, 罗兆艳 等. 水电解制氢非贵金属催化剂的研究进展 [J]. 物理化学学报, 2016, 32: 1556
14 Wang W, Feng W L, Du J, et al. Cosensitized quantum dot solar cells with conversion efficiency over 12% [J]. Adv. Mater., 2018, 30: 1705746
doi: 10.1002/adma.201705746
15 Carey G H, Abdelhady A L, Ning Z J, et al. Colloidal quantum dot solar cells [J]. Chem. Rev., 2015, 115: 12732
doi: 10.1021/acs.chemrev.5b00063 pmid: 26106908
16 Tian J J, Cao G Z. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells [J]. Coord. Chem. Rev., 2016, 320-321: 193
doi: 10.1016/j.ccr.2016.02.016
17 Wu C P, Xie K X, He J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance [J]. Rare Met., 2021, 40: 48
doi: 10.1007/s12598-020-01623-x
18 Wei Z P, Liu M N, Li H G, et al. SnO2 quantum dots decorated reduced graphene oxide nanosheets composites for electrochemical supercapacitor applications [J]. Int. J. Electrochem. Sci., 2020, 15: 6257
doi: 10.20964/2020.07.18
19 Xu Z M, Guan P Y, Younis A, et al. Manipulating resistive states in oxide based resistive memories through defective layers design [J]. RSC Adv., 2017, 7: 56390
doi: 10.1039/C7RA11681K
20 Yan X B, Pei Y F, Chen H W, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors [J]. Adv. Mater., 2019, 31: 1805284
doi: 10.1002/adma.201805284
21 Ren Z W, Wang J, Pan Z X, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9% [J]. Chem. Mater., 2015, 27: 8398
doi: 10.1021/acs.chemmater.5b03864
22 Hossain A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing [J]. Phys. Chem. Chem. Phys., 2012, 14: 7367
doi: 10.1039/c2cp40551b pmid: 22531753
23 Lin Y B, Lin Y, Meng Y M, et al. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells [J]. Opt. Commun., 2015, 346: 64
doi: 10.1016/j.optcom.2015.02.031
24 Liu D, Li Y, Zhang X L, et al. Heterostructured perylene diimide (PDI) supramolecular nanorods with SnO2 quantum dots for enhanced visible-light photocatalytic activity and stability [J]. Chem. Cat. Chem., 2022, 14: e202200087
25 Gao S, Yi X H, Shang J, et al. Organic and hybrid resistive switching materials and devices [J]. Chem. Soc. Rev., 2019, 48: 1531
doi: 10.1039/c8cs00614h pmid: 30398508
26 Kim E K, Bui H T, Shrestha N K, et al. An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature [J]. Electrochim. Acta, 2018, 260: 365
doi: 10.1016/j.electacta.2017.12.072
27 Pan Z X, Zhao K, Wang J, et al. Near infrared absorption of CdSe x Te1- x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability [J]. ACS Nano, 2013, 7: 5215
doi: 10.1021/nn400947e
28 Hossain A, Yang G W, Parameswaran M, et al. Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells [J]. J. Phys. Chem. C, 2010, 114: 21878
doi: 10.1021/jp109083k
29 Hossain A, Jennings J R, Koh Z Y, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells Exhibiting unprecedented photocurrent densities [J]. ACS Nano, 2011, 5: 3172
doi: 10.1021/nn200315b pmid: 21384799
30 Latif H, Ashraf S, Rafique M S, et al. A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode [J]. Sol. Energy, 2020, 204: 617
doi: 10.1016/j.solener.2020.03.114
31 Wang H, Li B, Gao J, et al. SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells [J]. Cryst. Eng. Comm., 2012, 14: 5177
doi: 10.1039/c2ce06531b
32 Du J, Du Z L, Hu J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6% [J]. J. Am. Chem. Soc., 2016, 138: 4201
doi: 10.1021/jacs.6b00615 pmid: 26962680
33 Wang W R, Jiang G C, Yu J, et al. High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes [J]. ACS Appl. Mater. Interfaces, 2017, 9: 22549
doi: 10.1021/acsami.7b05598
34 Peng W X, Du J, Pan Z X, et al. Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2017, 9: 5328
doi: 10.1021/acsami.6b14649
35 Liu Z Q, Cheng D F, Zhu Y L, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells [J]. Chem. Eng. J., 2022, 450: 137787
doi: 10.1016/j.cej.2022.137787
36 Tachibana Y, Hara K, Sayama K, et al. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells [J]. Chem. Mater., 2002, 14: 2527
doi: 10.1021/cm011563s
37 Sacco A. Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells [J]. Renewable Sustainable Energy Rev., 2017, 79: 814
doi: 10.1016/j.rser.2017.05.159
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.