Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 543-553    DOI: 10.11901/1005.3093.2022.350
  研究论文 本期目录 | 过刊浏览 |
Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能
王伟1(), 解泽磊1, 屈怡珅2, 常文娟1, 彭怡晴1, 金杰3, 王快社1
1.西安建筑科技大学冶金工程学院 陕西 710055
2.北京交通大学经济管理学院 北京 100044
3.北京交通大学机械与电子控制工程学院 北京 100044
Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives
WANG Wei1(), XIE Zelei1, QU Yishen2, CHANG Wenjuan1, PENG Yiqing1, JIN Jie3, WANG Kuaishe1
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
Wei WANG, Zelei XIE, Yishen QU, Wenjuan CHANG, Yiqing PENG, Jie JIN, Kuaishe WANG. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. Chinese Journal of Materials Research, 2023, 37(7): 543-553.

全文: PDF(19775 KB)   HTML
摘要: 

以石墨烯和正硅酸乙酯为原料用溶胶-凝胶法制备了Graphene/SiO2纳米复合材料,用球盘式摩擦磨损试验机评价其作为水基润滑添加剂在不同载荷和浓度下的摩擦学性能。用扫描电镜(SEM)、X射线光电子能谱(XPS)等手段表征了摩擦副的表面形貌和元素特征。结果表明:在15N载荷工况下,Graphene/SiO2纳米复合材料作为添加剂在超纯水中含量为0.2%(质量分数)时具有最佳的摩擦学性能 ,比超纯水的摩擦系数降低了17.9%,钢球磨损率降低了61.7%。基于磨损表面分析提出的润滑机制为:在摩擦过程中,Graphene/SiO2纳米复合材料在磨损表面生成的物理吸附膜、Graphene的层状剪切作用以及SiO2在磨损表面的修复作用和滚珠轴承作用,使超纯水的摩擦学性能提高。

关键词 复合材料石墨烯/二氧化硅复合材料摩擦性能润滑机制水基润滑剂    
Abstract

Graphene/SiO2 nanocomposites were prepared by sol-gel method using graphene and Tetraethyl orthosilicate as raw materials. The tribological properties of graphene/SiO2 nanocomposites as water-based lubrication additives were evaluated by ball-disk friction and wear testing machine under different loads and in the presence of ultra-pure waters with different additive concentrations. The surface morphology and elemental characteristics of the friction pair were analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that under the loading condition of 15N, in ultra-pure water with 0.2% (mass fraction) Graphene/SiO2 nanocomposites as additives the ball-disk pair exhibits the best tribological properties, with the coefficient of friction and the wear rate of the steel ball 17.9% and 61.7% lower, respectively than those in the blank ultra-pure water. Based on the wear surface analysis, the lubrication mechanism is as follows: during the friction process, the physical adsorption film formed by graphene/SiO2 nanocomposites on the wear surface, the layered shear action of graphene, the repair action of SiO2 on the wear surface, and the action of ball bearings. All together effectively improve the tribological properties of ultra-pure water.

Key wordscomposite    graphene/SiO2 composite    tribological properties    lubrication mechanism    water-based lubricant
收稿日期: 2022-06-28     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51975450)
通讯作者: 王伟,副教授,gackmol@163.com,研究方向为固体润滑涂层的制备及摩擦学性能研究
Corresponding author: WANG Wei, Tel: 13609264618, E-mail:gackmol@163.com
作者简介: 王伟,男,1985年生,博士
图1  制备Graphene/SiO2纳米复合材料的示意图
图2  不同试样的SEM照片、Graphene/SiO2的能谱、以及Graphene/SiO2、Graphene、Amorphous SiO2和SiO2的XRD谱
图3  Graphene/SiO2和Graphene的Raman谱
图4  不同润滑剂在不同时间的光学图像
图5  不同含量的Graphene/SiO2的平均摩擦系数和磨损率曲线
图6  超纯水和Graphene/SiO2在不同载荷条件下的摩擦系数
图7  超纯水和Graphene/SiO2不同载荷条件下的摩擦系数和磨损率
图8  TC4圆盘的三维白光和磨痕剖面
图9  不同载荷下GCr15的磨痕OM图
图10  Hertz球盘接触模型
图11  不同载荷下TC4盘的磨痕SEM照片
图12  10 N载荷下0.2%Graphene/SiO2润滑添加剂的TC4盘磨痕能谱
图13  15N载荷下0.2% Graphene/SiO2润滑添加剂的 TC4盘磨痕能谱
图14  Graphene/SiO2润滑的TC4圆盘磨损表面的XPS分析
图15  Graphene/SiO2的润滑机理示意图
1 Li C H, Zhu M, Wang N, et al. Application of titanium alloy in airplane [J]. Chinese Journal of Rare Metals, 2009, 33(1): 84
1 李重河, 朱 明, 王 宁 等. 钛合金在飞机上的应用 [J]. 稀有金属, 2009, 33(01): 84
2 Niinomi M. Recent progress in research and development of metallic structural biomaterials with mainly focusing on mechanical biocompatibility [J]. Materials Transactions, 2018, 59(1): 1
doi: 10.2320/matertrans.M2017180
3 Liu Q M, Xu J K, Yu H D. Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V [J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2917
doi: 10.1007/s00170-020-05593-3
4 Zhang H, Qi X. Super low friction characteristics initiated by running-in process inwater-based lubricant for Ti-alloy [J]. Chinese Journal of Materials Research, 2021, 35(5): 349
4 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性 [J]. 材料研究学报, 2021, 35(05): 349
5 Cheng J, Li F, Qiao Z H, et al. The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics [J]. Materials & Design, 2015, 84: 245
6 Sun J, Meng Y. Lubrication and repair of metal surface by nano-fluid [J]. Surface Technology, 2019, 48(11): 1
6 孙建林, 孟亚男. 纳米加工液对金属表面的润滑与修复 [J]. 表面技术, 2019, 48(11): 1
7 Xu Y F, Sun K Q, Yu J Y, et al. Tribological properties of TiO2/BP nanocomposites as lubricant additives for titanium alloy tribopairs [J]. Tribology Transactions, 2022, 65(2): 270
doi: 10.1080/10402004.2021.2007317
8 Hegab H, Kishawy H A, Gadallah M H, et al. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication [J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1593
doi: 10.1007/s00170-018-2028-4
9 Hou S X, Li Z G, Ren C X, et al. Research progress of graphene as additives in lubrication [J]. Applied Chemical Industry, 2021, 50(6): 1683
9 侯锁霞, 李兆刚, 任呈祥 等. 石墨烯添加剂润滑性能的研究进展 [J]. 应用化工, 2021, 50(06): 1683
10 Ye X Y, Ma L M, Yang Z G, et al. Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive [J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7483
11 Li M, Yu T B, Zhang R C, et al. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid [J]. Int. J. Adv. Manuf. Technol., 2018, 99(5-8): 1735
doi: 10.1007/s00170-018-2576-7
12 Kong N, Zhang J, Zhang J, et al. Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant [J]. Nanomaterials, 2020, 10(4): 665
doi: 10.3390/nano10040665
13 Ibrahim A M M, Li W, Xiao H, et al. Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication [J]. Tribology International, 2020, 150: 106387
doi: 10.1016/j.triboint.2020.106387
14 Fu T, Ma S H, Zhou F, et al. Progress of functionalized graphene nanomaterials and their applications as water-based lubricating additives [J]. Tribology, 2022, 42(2): 408
14 付 甜, 麻拴红, 周 峰 等. 石墨烯的功能化改性及其作为水基润滑添加剂的应用进展 [J]. 摩擦学学报, 2022, 42(02): 408
15 Wang Y, Hu Y, Zhao H, et al. Research progress of graphene as additives of water-based lubricants [J]. Materials Review, 2021, 35(10A): 19055
16 Meng Y, Su F, Chen Y. Au/Graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive [J]. ACS. Appl. Mater. Interfaces., 2017, 9(45): 39549
doi: 10.1021/acsami.7b10276
17 Meng Y, Su F, Chen Y J C E J. Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear [J]. Chemical Engineering Journal, 2015, 281: 11
doi: 10.1016/j.cej.2015.06.073
18 Wang L, Gong P, Li W, et al. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear [J]. Tribology International, 2020, 146: 106228
doi: 10.1016/j.triboint.2020.106228
19 Xie H M, Jiang B, He J J, et al. Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet [J]. Materials Research Innovations, 2015, 19(suppl.4) : S127
20 Li X, Chen Y, Mo S P, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid [J]. Thermochimica Acta, 2014, 595: 6
doi: 10.1016/j.tca.2014.09.006
21 Wang N, Wang H, Ren J, et al. Novel additive of PTFE@SiO2 Core-Shell nanoparticles with superior water lubricating properties [J]. Materials & Design, 2020: 109069
22 Zhang C L, He Y, Xu Z H, et al. Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings [J]. Polymers for Advanced Technologies, 2016, 27(6): 740
doi: 10.1002/pat.3707
23 Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62
doi: 10.1016/0021-9797(68)90272-5
24 Xiao H P, Guo D, Liu S H, et al. Contact ratio of rough surfaces with multiple asperities in mixed lubrication at high pressures [J]. Appl. Surf. Sci., 2012, 258(8): 3888
doi: 10.1016/j.apsusc.2011.12.053
25 Wu C H, Zhang L C, Qu P L, et al. Characterization of interface stresses and lubrication of rough elastic surfaces under ball-on-disc rolling [J]. Proc. Inst. Mech. Eng. Part. J-J. Eng. Tribol., 2017, 231(12): 1552
doi: 10.1177/1350650117700793
26 Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen [J]. Carbon, 2013, 59: 167
doi: 10.1016/j.carbon.2013.03.006
27 Mercado-Solis R D, Mata-Maldonado J G, Quinones-Salinas M A, et al. Micro-scale abrasive wear testing of CrN duplex PVD coating on pre-nitrided tool steel [J]. Mater. Res-Ibero-am. J. Mater., 2017, 20(4): 1092
28 Kozisek Z. Crystallization in small droplets: competition between homogeneous and heterogeneous nucleation [J]. J. Cryst. Growth., 2019, 522: 53
doi: 10.1016/j.jcrysgro.2019.06.007
29 Seehra M S, Narang V, Geddam U K, et al. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification [J]. Carbon, 2017, 111: 380
doi: 10.1016/j.carbon.2016.10.010 pmid: 28690336
30 Chen A L, Li Z F, Chen Y. Influence of silica-core structure on polishing characteristics of core/shell structured composite particles of SiO2/CeO2 [J]. Chinese Journal of Materials Research, 2017, 31(6): 429
30 陈爱莲, 李泽锋, 陈 杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响 [J]. 材料研究学报, 2017, 31(6): 429
doi: 10.11901/1005.3093.2016.625
31 Wang D J, Zhang M Q, Ji Z S, et al. Process and properties of graphene reinforced Mg-based composite prepared by in-situ method [J]. Chinese Journal of Materials Research, 2021, 35(6): 474
31 王殿君, 张明秋, 吉泽升, 张吉生 等. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能[J]. 材料研究学报, 2021, 35(6): 474
32 Nanda S S, Kim M J, Yeom K S, et al. Raman spectrum of graphene with its versatile future perspectives [J]. Trac-Trends. Anal. Chem., 2016, 80: 125
doi: 10.1016/j.trac.2016.02.024
33 Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement [J]. J. of Mater. Chem., 2009, 19(26): 4632
doi: 10.1039/b901421g
34 Wan Y J, Gong L X, Tang L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide [J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79
35 Gulzar M, Masjuki H H, Kalam M A, et al. Tribological performance of nanoparticles as lubricating oil additives [J]. Journal of Nanoparticle Research, 2016, 18(8): 223
doi: 10.1007/s11051-016-3537-4
36 Guo J D, Peng R L, Du H, et al. The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement [J]. Nanomaterials, 2020, 10(2): 12
doi: 10.3390/nano10010012
37 Di Puccio F, Mattei L. Biotribology of artificial hip joints [J]. World Journal of Orthopedics, 2015, 6: 77
doi: 10.5312/wjo.v6.i1.77 pmid: 25621213
38 Wang W, Zhang G L, Xie G X. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 10
39 Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method [J]. Chinese Journal of Materials Research, 2020, 34(2): 92
doi: 10.11901/1005.3093.2019.443
39 秦艳利, 杨 艳, 赵鹏羽 等, 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02):92
40 Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst [J]. Chinese Journal of Materials Research, 2021, 35(9): 703
40 侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
41 Qi H M, Hu C, Li J, et al. Tribological performance of PTFE and its composite in wide temperature range [J]. Tribology, 2022, 42(1): 65
41 齐慧敏, 胡 超, 李 洁 等. 宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究 [J]. 摩擦学学报, 2022, 42(1): 65
42 Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results [J]. Journal of Lubrication Technology, 1977, 99(2): 264
doi: 10.1115/1.3453074
43 Mosey N J, Woo T K J T J O P C A. A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives [J]. Journal of Physical Chemistry A, 2004, 108(28): 6001
doi: 10.1021/jp049371i
44 Oztas T, Sen H S, Durgun E, et al. Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment [J]. Journal of Physical Chemistry C, 2014, 118(51): 30120
doi: 10.1021/jp505858h
45 Tang H, Cao K, Wu Q, et al. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles [J]. Crystal Research and Technology, 2011, 46(2): 195
doi: 10.1002/crat.v46.2
46 Li J F, Shi Q, Zhu H, et al. Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets [J]. Ind. Lubr. Tribol., 2018, 70(3): 560
doi: 10.1108/ILT-10-2016-0259
47 Wang Y N, Wan Z P, Lu L S, et al. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles [J]. Tribology International, 2018, 124: 10
doi: 10.1016/j.triboint.2018.03.035
48 Nguyen D, Xie X D, Wen G, et al. Research on tribological behavior of TiN nanoparticles as lubricating additive [J]. Lubrication Engineering, 2015, 40(9): 42
48 阮亭纲, 谢先东, 文 广 等. 纳米TiN润滑油添加剂的摩擦学性能研究 [J]. 润滑与密封, 2015, 40(9): 42
49 Li C J, Tang W W, Tang X Z, et al. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems [J]. Tribology International, 2022, 167: 12
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[7] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.