|
|
g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解 |
任富彦1,3, 欧阳二明2( ) |
1.南昌大学工程建设学院 南昌 330031 2.南昌大学资源与环境学院 南昌 330031 3.新疆科技学院会计学院 库尔勒 830091 |
|
Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3 |
REN Fuyan1,3, OUYANG Erming2( ) |
1.School of Engineering and Construction, Nanchang University, Nanchang 330031, China 2.School of Resources and Environment, Nanchang University, Nanchang 330031, China 3.School of Accounting, Xinjiang University of Science and Technology, Kuerle 830091, China |
引用本文:
任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
Fuyan REN,
Erming OUYANG.
Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. Chinese Journal of Materials Research, 2023, 37(8): 633-640.
1 |
He Y J, Sutton N B, Rijnaarts H H H, et al. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation [J]. Appl. Catal., 2016, 182B: 132
|
2 |
Quyen V T, Kim H J, Kim J, et al. Synthesizing S-doped graphitic carbon nitride for improvement photodegradation of tetracycline under solar light [J]. Solar Energy, 2021, 214: 288
doi: 10.1016/j.solener.2020.12.016
|
3 |
Xu L Y, Zhang H, Xiong P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review [J]. Sci. Total Environ., 2021, 753: 141975
doi: 10.1016/j.scitotenv.2020.141975
|
4 |
Roy N, Alex S A, Chandrasekaran N, et al. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts [J]. J. Environ. Chem. Eng., 2021, 9: 104796
doi: 10.1016/j.jece.2020.104796
|
5 |
Hou X, Wang Z Q, Chen J J, et al. Facile construction of silver-based solid solution heterophase for efficient visible-light-driven photocatalytic degradation of tetracycline [J]. Chem. Eng. J., 2021, 414: 128915
doi: 10.1016/j.cej.2021.128915
|
6 |
Wu Y C, Chaing Y C, Huang C Y, et al. Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance [J]. Dyes Pigm., 2013, 98(1): 25
doi: 10.1016/j.dyepig.2013.02.006
|
7 |
Leontie L, Caraman M, Delibaş M, et al. Optical properties of bismuth trioxide thin films [J]. Mater. Res. Bull., 2001, 36(9): 1629
doi: 10.1016/S0025-5408(01)00641-9
|
8 |
Yu H J, Li J Y, Zhang Y H, et al. Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction [J]. Angew. Chem. Int. Ed., 2019, 58: 3880
doi: 10.1002/anie.v58.12
|
9 |
Yakout S M. New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase [J]. J. Environ. Chem. Eng., 2020, 8(1): 103644
doi: 10.1016/j.jece.2019.103644
|
10 |
Ji R, Ma C C, Ma W, et al. Z-scheme MoS2/Bi2O3 heterojunctions: enhanced photocatalytic degradation performance and mechanistic insight [J]. New J. Chem., 2019, 43(30): 11876
doi: 10.1039/C9NJ02521A
|
11 |
Ke J, Liu J, Sun H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation [J]. Appl. Catal., 2017, 200B: 47
|
12 |
Che H N, Liu C B, Hu W, et al. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions [J]. Catal. Sci. Technol., 2018, 8(2): 622
doi: 10.1039/C7CY01709J
|
13 |
You S Z, Hu Y, Liu X C, et al. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Appl. Catal., 2018, 232B: 288
|
14 |
Liu H, Luo M, Hu J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance [J]. Appl. Catal., 2013, 140-141B: 141
|
15 |
Wang Y C, Liu X Y, Wang X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion [J]. Chem. Eng. J., 2021, 419: 129459
doi: 10.1016/j.cej.2021.129459
|
16 |
Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2- x Se core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110
|
17 |
Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications [J]. ACS Nano, 2020, 14(10): 12390
doi: 10.1021/acsnano.0c06116
|
18 |
Ali W, Zhang X L, Zhang X X, et al. Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2,4-dichlorophenol degradation [J]. Mater. Res. Bull., 2020, 122: 110676
doi: 10.1016/j.materresbull.2019.110676
|
19 |
Liu S L, Chen J L, Xu D F, et al. Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication [J]. J. Mater. Res., 2018, 33(10): 1391
doi: 10.1557/jmr.2018.67
|
20 |
Xu Q L, Zhang L Y, Yu J G, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications [J]. Mater. Today, 2018, 21(10): 1042
doi: 10.1016/j.mattod.2018.04.008
|
21 |
He R A, Zhou J Q, Fu H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity [J]. Appl. Surf. Sci., 2018, 430: 273
doi: 10.1016/j.apsusc.2017.07.191
|
22 |
Zhang L P, Wang G H, Xiong Z Z, et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation [J]. Appl. Surf. Sci., 2018, 436: 162
doi: 10.1016/j.apsusc.2017.11.280
|
23 |
Alhaddad M, Navarro R M, Hussein M A, et al. Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light [J]. Ceram. Int., 2020, 46(16): 24873
doi: 10.1016/j.ceramint.2020.06.271
|
24 |
Xue S, Hou X Y, Xie W H, et al. Dramatic improvement of photocatalytic activity for N-doped Bi2O3/g-C3N4 composites [J]. Mater. Lett., 2015, 161: 640
doi: 10.1016/j.matlet.2015.09.067
|
25 |
Yan D, Wu X, Pei J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties [J]. Ceram. Int., 2020, 46(1): 696
doi: 10.1016/j.ceramint.2019.09.022
|
26 |
Zada A, Qu Y, Ali S, et al. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path [J]. J. Hazard. Mater., 2018, 342: 715
doi: 10.1016/j.jhazmat.2017.09.005
|
27 |
Hernández-Gordillo A, Medina J C, Bizarro M, et al. Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent [J]. Ceram. Int., 2016, 42(10): 11866
doi: 10.1016/j.ceramint.2016.04.109
|
28 |
Qi K Z, Zada A, Yang Y, et al. Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant [J]. Res. Chem. Intermed., 2020, 46(12): 5281
doi: 10.1007/s11164-020-04262-0
|
29 |
Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation [J]. Chin. J. Catal., 2021, 42(1): 56
doi: 10.1016/S1872-2067(20)63634-8
|
30 |
Zhao K, Khan I, Qi K Z, et al. Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants [J]. Mater. Chem. Phys., 2020, 253: 123322
doi: 10.1016/j.matchemphys.2020.123322
|
31 |
Luo Y D, Huang Q Q, Li B, et al. Synthesis and characterization of Cu2O-modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2015, 357: 1072
doi: 10.1016/j.apsusc.2015.09.126
|
32 |
Jiang H Y, Liu G, Wang T, et al. In situ construction of α-Bi2O3/gC3N4/β-Bi2O3 composites and their highly efficient photocatalytic performances [J]. RSC Advances, 2015, 113 (5): 92963
|
33 |
Geng X Q, Chen S, Lv X, et al. Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light [J]. Appl. Surf. Sci., 2018, 462: 18
doi: 10.1016/j.apsusc.2018.08.080
|
34 |
Zhao R Y, Sun X X, Jin Y R, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride [J]. J. Mater. Sci., 2019, 54(7): 5445
doi: 10.1007/s10853-018-03278-7
|
35 |
Kaur A, Kansal S K. Insitu synthesis, characterization of Z-scheme g-C3N4/Bi2O3 as photocatalyst for degradation of azo dye, Amido black-10B under solar irradiation [J]. Ceram. Int., 2022, 48: 29445
doi: 10.1016/j.ceramint.2022.07.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|