Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 241-249    DOI: 10.11901/1005.3093.2021.314
  研究论文 本期目录 | 过刊浏览 |
CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能
孟祥东1,2, 甄超1(), 刘岗1,3, 成会明1,2,4
1.中国科学院金属研究所 沈阳材料国家研究中心 沈阳 10016
2.上海科技大学 物质科学与技术学院 上海 201210
3.中国科学技术大学 材料科学与工程学院 沈阳 10016
4.清华-伯克利深圳学院 深圳盖姆石墨烯研究中心 深圳 518055
Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting
MENG Xiangdong1,2, ZHEN Chao1(), LIU Gang1,3, CHENG Huiming1,2,4
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4.Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
引用本文:

孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
Xiangdong MENG, Chao ZHEN, Gang LIU, Huiming CHENG. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. Chinese Journal of Materials Research, 2022, 36(4): 241-249.

全文: PDF(8203 KB)   HTML
摘要: 

用原位基体加热反应磁控溅射方法制备具有强捕光和电荷分离能力的CuO纳米阵列(CuO NAs)光阴极,并改变氧分压、基底温度、腔体压力以及溅射时间等参数调控其相组成、晶体形貌、晶体生长取向、晶面暴露、厚度以及电子结构。结果表明,结构优化的CuO NAs光阴极,其光电流密度可达2.4 mA·cm-2

关键词 无机非金属材料光电化学分解水磁控溅射氧化铜    
Abstract

Photocathode of CuO nanoarray (CuO NAS) with strong ability of light capture and charge separation capacity was fabricated by reactive magnetron sputtering with in-situ heating the substrate, while the phase composition, crystal morphology, crystal growth orientation, crystal face exposure, thickness and electronic structure of the films were controlled by changing oxygen partial pressure, substrate temperature, cavity pressure and sputtering time. The photocurrent density of the optimized CuO NAS photocathode is up to 2.4 mA·cm-2.

Key wordsinorganic non-metallic materials    photoelectrochemical water splitting    magnetron sputtering    CuO
收稿日期: 2021-05-19     
ZTFLH:  150.3045  
基金资助:国家自然科学基金(51825204);国家自然科学基金(52072377);中国科学院前沿科学研究重点计划项目(拔尖青年科学家类别)(QYZDB-SSW-JSC039);中国科学院青年创新促进会(2020192)
作者简介: 孟祥东,男,1996年生,硕士生
图1  制备CuO NAs光阴极过程的示意图
图2  氧分压不同的样品及其截面的SEM照片
图3  压力为1.0 Pa、基底温度为300oC,氧分压分别为6%,25%,50%,75%,94%样品的XRD谱
图4  压力为1.0 Pa,基底温度分别为100℃,200℃,300℃,400℃,500℃的CuO NAs光阴极及其截面的SEM照片
图5  压力为1.0 Pa,基底温度分别为100℃,200℃,300℃,400℃,500℃的CuO NAs光阴极的XRD谱和CuO的标准卡片
图6  压力为1.0 Pa、基底温度为300℃、溅射时间分别为15 min、30 min、60 min、90 min、120 min的CuO NAs光阴极及其截面的SEM照片
图7  压力为1.0 Pa,基底温度为300℃、溅射时间分别为15 min,30 min,60 min,90 min,120 min的CuO NAs光阴极的XRD谱
图8  基底温度为400℃,溅射时间为90 min,压力分别为1.0 Pa、1.5 Pa、4.1 Pa、8.5 Pa的CuO NAs光阴极及其截面的SEM照片
图9  基底温度为400℃,溅射时间为90 min,压力分别为1.0 Pa、1.5 Pa、4.1 Pa、8.5 Pa的CuO NAs光阴极的XRD谱
图10  制备压力为1.0 Pa,基底设定温度为300℃,溅射时间分别为15 min、30 min、60 min、90 min、120 min的CuO NAs光阴极的紫外和可见光吸收谱
图11  基底温度为400℃,溅射时间为90 min,压力分别为1.0 Pa、1.5 Pa、4.1 Pa、8.5 Pa的CuO NAs光阴极的紫外和可见光吸收谱以及对应的Tauc图
图12  压力为1.0 Pa,基底温度为300℃,氧分压分别为6%、25%、50%、75%、94%样品的光电流密度随施加电压的变化,电解液为0.1 mol/L KOH水溶液,电极面积为1 cm2
图13  压力为1.0 Pa、基底温度分别为100℃、200℃、300℃、400℃、500℃的CuO NAs光阴极的光电流密度与施加电压的关系,电解液为0.1 mol/L KOH水溶液,电极面积为1 cm2
图14  压力为1.0 Pa,基底温度为300℃,溅射时间分别为15 min、30 min、60 min、90 min、120 min的CuO NAs光阴极的光电流密度与电压的关系,电解液为0.1 mol/L KOH水溶液,电极面积为1 cm2
图15  基底定温度为400℃,溅射时间为90 min,压力分别为1.0 Pa、1.5 Pa、4.1 Pa、8.5 Pa的CuO NAs光阴极的线性极化曲线和光电流随时间的变化,电解液为0.1 mol/L KOH水溶液,电极电位为0.56 V(vs. RHE),电极面积为1 cm2
图16  基底温度为400℃、溅射时间为90 min、制备压力分别为1.0 Pa、1.5 Pa、4.1 Pa和8.5 Pa的CuO NAs光阴极的莫特-肖特基曲线
1 Wang Y., Schwartz J., Gim J., et al. Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures [J]. Acs Energy Lett, 2019, 4(7): 1541
doi: 10.1021/acsenergylett.9b00549
2 Li D., Liu Y., Shi W., et al. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation [J]. Acs Energy Lett, 2019, 4(4): 825
doi: 10.1021/acsenergylett.9b00153
3 Cheng W. H., Richter M. H., May M. M., et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency [J]. Acs Energy Lett, 2018, 3(8): 1795
doi: 10.1021/acsenergylett.8b00920
4 Hsu M. -H.,Lee W. -J.,Kuang J. -H., et al. Wind energy [J]. Mathematical Problems in Engineering, 2013, 13(1): 759686
5 Grandin K., Jagers P., Kullander S. Nuclear energy [J]. Ambio, 2010, 39(26): 26
doi: 10.1007/s13280-010-0061-0
6 Luo J.,, Im J. -H.,Mayer M. T., et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts [J]. Science, 2014, 345(6204):1593
doi: 10.1126/science.1258307
7 Zhu S., Wang, Photocatalysis D. : Basic principles, diverse forms of implementations and emerging scientific opportunities [J]. Adv Energy Mater, 2017, 7(23): 1700841
doi: 10.1002/aenm.201700841
8 Qi J., Zhang W., Cao R. Solar-to-hydrogen energy conversion based on water splitting [J]. Adv Energy Mater, 2018, 8(5): 1701620
doi: 10.1002/aenm.201701620
9 Low J., Jiang C., Cheng B., et al. A review of direct Z-scheme photocatalysts [J]. Small Methods, 2017, 1(5): 1700080
doi: 10.1002/smtd.201700080
10 Liu X., Inagaki S., Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55(48): 14924
doi: 10.1002/anie.201600395
11 Liu J., Hodes G., Yan J. Q., et al. Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution [J]. Chinese J. Catal., 2021, 42(01): 205
doi: 10.1016/S1872-2067(20)63589-6
11 刘 晶, 盖瑞侯得, 闫俊青 等. 金属(Fe,Co,Ni,Cu)掺杂的Mo2C催化剂在TiO2表面用于中性条件光催化分解水产氢 [J]. 中国催化学报, 2021, 42(01): 205
12 Liu Y. J., Geng L., Kang Y., et al. Odd‐membered cyclic hetero‐polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese J. Catal., 2021, 42(08): 1332
doi: 10.1016/S1872-2067(20)63648-8
12 刘雅洁, 耿 琳, 康 遥 等. 具有高稳定性以及光催化产氢活性的奇数环状异金属钛氧纳米团簇 [J]. 中国催化学报, 2021, 42(08): 1332
13 Zhou D. H., Fan K., Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting [J]. Chinese J. Catal., 2021, 42(06): 904
doi: 10.1016/S1872-2067(20)63712-3
13 周定华, 范 科. 提高氧化铁光电催化分解水效率的策略进展 [J]. 中国催化学报, 2021, 42(06): 904
14 Xie L., Wang P., Li Z. F., et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
14 谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
15 Zhu X. D., Wang J., Ma Y., et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
15 朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
16 Jundale D. M., Joshi P. B., Sen S., et al. Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties [J]. J Mater Sci-Mater El, 2012, 23(8): 1492
doi: 10.1007/s10854-011-0616-2
17 Wang Z., Zhang L., Schülli T. U., et al. Identifying copper vacancies and their role in the CuO based photocathode for water splitting [J]. 2019, 58(49): 17604
18 Septina W., Prabhakar R. R., Wick R., et al. Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes [J]. Chem. Mater., 2017, 29(4): 1735
doi: 10.1021/acs.chemmater.6b05248
19 Kunturu P. P., Huskens J. Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer [J]. Acs Appl Energ Mater, 2019, 2(11): 7850
doi: 10.1021/acsaem.9b01290
20 Hardee K. L., Bard A. J. Semiconductor Electrodes: X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions [J]. J. Electrochem. Soc., 1977, 124(2): 215
doi: 10.1149/1.2133269
21 Guha S., Peebles D., Wieting T. J. Zone-center (q=0) optical phonons in CuO studied by Raman and infrared spectroscopy [J]. Physical Review B, 1991, 43(16): 13092
pmid: 9997131
22 Forsyth J. B., Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO [J]. J. Phys.: Condens. Matter, 1991, 3(28): 5257
doi: 10.1088/0953-8984/3/28/001
23 Wang S. Q., Huo W. Y., Xu Z. C., et al. Fabrication of films of Co doped TiO2 nanotube array and their photocatalytic reduction performance [J]. Chin. J. Mater. Res., 2020, 34(3): 176
23 王世琦, 霍文燚, 徐正超 等. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 [J]. 材料研究学报, 2020, 34(3): 176
doi: 10.11901/1005.3093.2019.373
24 Wang Z. M., Zhu X. L., Li Y. M., et al. Effect of B and Ru co-modification on structure and photocatalytic activity of TiO2 nanotubes [J]. Chin. J. Mater. Res., 2018, 32(9): 655
24 王竹梅, 朱晓玲, 李月明 等. B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响 [J]. 材料研究学报, 2018, 32(9): 655
25 Xue W. H., Chang W. X., Hu X. Y., et al. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution [J]. Chinese J. Catal., 2021, 42(01): 152
doi: 10.1016/S1872-2067(20)63593-8
25 薛文华, 常文茜, 胡晓云 等. 二维介孔超薄Cd0.5Zn0.5S纳米片:形成机制及光催化分解水制氢性能 [J]. 中国催化学报, 2021, 42(01): 152
26 Samarasekara P.,, Arachchi M. A. K. M.,Abeydeera A. S., et al. Photocurrent enhancement of d.c. sputtered copper oxide thin films [J]. Bull. Mater. Sci., 2005, 28(5): 483
doi: 10.1007/BF02711241
27 Kayes B. M., Atwater H. A., Lewis N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J]. J. Appl. Phys., 2005, 97(11): 114302
doi: 10.1063/1.1901835
28 Iles P. A. Diffusion length measurement and silicon quality [J]. Solar Cells, 1982, 7(1): 79
doi: 10.1016/0379-6787(82)90092-8
29 Chen C. J., Yeh C. Y., Chen C. H., et al. Molybdenum tungsten disulfide with a large number of sulfur vacancies and electronic unoccupied states on silicon micropillars for solar hydrogen evolution [J]. Acs Appl Mater Inter, 2020, 12(49): 54671
doi: 10.1021/acsami.0c15905
30 Lee M. H., Takei K., Zhang J., et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angew. Chem. Int. Ed., 2012, 51(43): 10760
doi: 10.1002/anie.201203174
31 Hochbaum A. I., Yang P. Semiconductor Nanowires for Energy Conversion [J]. Chem. Rev., 2010, 110(1): 527
doi: 10.1021/cr900075v pmid: 19817361
32 Luo J., Steier L., Son M. K., et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting [J]. Nano Lett., 2016, 16(3): 1848
doi: 10.1021/acs.nanolett.5b04929
33 Masudy-Panah S., Siavash Moakhar R., Chua C. S., et al. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting [J]. Acs Appl Mater Inter, 2016, 8(2): 1206
doi: 10.1021/acsami.5b09613
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.