|
|
锆合金表面Cr基涂层的耐高温氧化性能 |
单位摇1,2, 王永利1( ), 李静1, 熊良银1, 杜晓明3, 刘实1 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 特种合金研究部 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 3.沈阳理工大学材料科学与工程学院 沈阳 110159 |
|
High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy |
SHAN Weiyao1,2, WANG Yongli1( ), LI Jing1, XIONG Liangyin1, DU Xiaoming3, LIU Shi1 |
1.Special Alloy Research Department, Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China |
引用本文:
单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
Weiyao SHAN,
Yongli WANG,
Jing LI,
Liangyin XIONG,
Xiaoming DU,
Shi LIU.
High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. Chinese Journal of Materials Research, 2022, 36(9): 699-705.
1 |
Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating [J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
|
2 |
Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel [J]. Prog. Nucl. Energy, 2012, 57: 71
doi: 10.1016/j.pnucene.2011.10.008
|
3 |
Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions [J]. J. Nucl. Mater., 2014, 448: 520
doi: 10.1016/j.jnucmat.2013.09.052
|
4 |
Ševeček M, Gurgen A, Phillips B, et al. Cold spray Cr-coated fuel cladding with enhanced accident tolerance [A]. 2017 Water Reactor Fuel Performance Meeting [C]. Jeju Island, Korea: WRFPM, 2017
|
5 |
Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
|
6 |
Brachet J C, Saux M L, Flem M L, et al. On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel [A]. TopFuel 2015 [C]. Zurich, Switzerland, 2015
|
7 |
Ribis J, Wu A, Brachet J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material [J]. J. Mater. Sci., 2018, 53: 9879
doi: 10.1007/s10853-018-2333-1
|
8 |
Bischoff J, Delafoy C, Vauglin C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding [J]. Nucl. Eng. Technol., 2018, 50: 223
doi: 10.1016/j.net.2017.12.004
|
9 |
Wagih M, Spencer B, Hales J, et al. Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings [J]. Ann. Nucl. Energy, 2018, 120: 304
doi: 10.1016/j.anucene.2018.06.001
|
10 |
Zhong W C, Mouche P A, Heuser B J. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam [J]. J. Nucl. Mater., 2018, 498: 137
doi: 10.1016/j.jnucmat.2017.10.021
|
11 |
Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions [A]. TopFuel 2013 [C]. Charlotte, NC, USA, 2013
|
12 |
Wu Y W, He X J, Zhang J L, et al. CrAl-based high-temperature coatings on zirconium alloy and oxidation behavior [J]. Surf. Technol., 2018, 47(9): 34
|
12 |
吴亚文, 贺秀杰, 张继龙 等. 锆合金表面CrAl基耐高温涂层及氧化行为研究 [J]. 表面技术, 2018, 47(9): 34
|
13 |
Kim H G, Kim I H, Jung Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs [J]. J. Nucl. Mater., 2018, 510: 93
doi: 10.1016/j.jnucmat.2018.07.061
|
14 |
Zhong W C, Mouche P A, Han X C, et al. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions [J]. J. Nucl. Mater., 2016, 470: 327
doi: 10.1016/j.jnucmat.2015.11.037
|
15 |
Park D, Mouche P A, Zhong W C, et al. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure [J]. J. Nucl. Mater., 2018, 502: 95
doi: 10.1016/j.jnucmat.2018.01.055
|
16 |
Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy, 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
|
17 |
Wang Z Y, Liu J Z, Wang L, et al. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique [J]. Appl. Surf. Sci., 2017, 396: 1435
doi: 10.1016/j.apsusc.2016.11.183
|
18 |
Feng Z J, Ke P L, Huang Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor [J]. Surf. Coat. Technol., 2015, 272: 380
doi: 10.1016/j.surfcoat.2015.03.037
|
19 |
Gutzmann H, Gärtner F, Höche D, et al. Cold spraying of Ti2AlC MAX-phase coatings [J]. J. Therm. Spray Technol., 2013, 22: 406
doi: 10.1007/s11666-012-9843-1
|
20 |
Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
|
21 |
Daub K, Van Nieuwenhove R, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4 [J]. J. Nucl. Mater., 2015, 467: 260
doi: 10.1016/j.jnucmat.2015.09.041
|
22 |
Liu Y, Bhamji I, Withers P J, et al. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach [J]. J. Nucl. Mater., 2015, 466: 718
doi: 10.1016/j.jnucmat.2015.06.003
|
23 |
Mo J L, Zhu M H, Lei B, et al. Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition [J]. Wear, 2007, 263: 1423
doi: 10.1016/j.wear.2007.01.051
|
24 |
Park J W, Kim J U, Park J Y. Ion beam mixed oxidation protective coating on Zry-4 cladding [J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2016, 377: 12
doi: 10.1016/j.nimb.2016.04.001
|
25 |
Bao W C, Xue J X, Liu J X, et al. Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature [J]. J. Alloys Compd., 2018, 730: 81
doi: 10.1016/j.jallcom.2017.09.281
|
26 |
Rai A K, Srinivasulu B, Paul C P, et al. Development of thick SiC coating on thin wall tube of Zircaloy-4 using laser based directed energy deposition technique [J]. Surf. Coat. Technol., 2020, 398: 1
|
27 |
Meng F P, Wang B, Ge F F, et al. Microstructure and mechanical properties of Ni-alloyed SiC coatings [J]. Surf. Coat. Technol., 2012, 213: 77
doi: 10.1016/j.surfcoat.2012.10.020
|
28 |
Usui T, Sawada A, Amaya M, et al. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding [J]. J. Nucl. Sci. Technol., 2015, 52: 1
|
29 |
Malinovschi V, Marin A, Negrea D, et al. Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2018, 451: 169
doi: 10.1016/j.apsusc.2018.04.207
|
30 |
Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
|
31 |
Tang C C, Stueber M, Seifert H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings [J]. Corros. Rev, 2017, 35: 141
doi: 10.1515/corrrev-2017-0010
|
32 |
Kim H G, Kim I H, Jung Y I, et al. High-temperature oxidation behavior of Cr-coated zirconium alloy [A]. TopFuel 2013 [C]. Charlotte, North Carolina, 2013
|
33 |
Maier B, Yeom H, Johnson G, et al. Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors [J]. JOM, 2018, 70: 198
doi: 10.1007/s11837-017-2643-9
|
34 |
Park D J, Kim H G, Jung Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions [J]. J. Nucl. Mater., 2016, 482: 75
doi: 10.1016/j.jnucmat.2016.10.021
|
35 |
Wang X J, Liu Y H, Feng S, et al. Synthesis and property characterization of magnetron sputtered SiC/Cr coatings on Zr-based alloy [J]. Chin. J. Vac. Sci. Technol., 2018, 38: 332
|
35 |
王晓婧, 刘艳红, 冯 硕 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究 [J]. 真空科学与技术学报, 2018, 38: 332
|
36 |
Wang Y D, Zhou W C, Wen Q L, et al. Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J]. Surf. Coat. Technol., 2018, 344: 141
doi: 10.1016/j.surfcoat.2018.03.016
|
37 |
Hu X G, Dong C, Wang Q, et al. High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings [J]. J. Nucl. Mater., 2019, 519: 145
doi: 10.1016/j.jnucmat.2019.01.039
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|