Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 801-810    DOI: 10.11901/1005.3093.2020.487
  综述 本期目录 | 过刊浏览 |
载银沸石应用的研究进展
俞建忠, 许新玲, 叶松()
同济大学材料科学与工程学院 上海 201804
Research Progress on the Applications of Silver-loaded Zeolites
YU Jianzhong, XV Xinling, YE Song()
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

俞建忠, 许新玲, 叶松. 载银沸石应用的研究进展[J]. 材料研究学报, 2021, 35(11): 801-810.
Jianzhong YU, Xinling XV, Song YE. Research Progress on the Applications of Silver-loaded Zeolites[J]. Chinese Journal of Materials Research, 2021, 35(11): 801-810.

全文: PDF(4915 KB)   HTML
摘要: 

沸石微孔晶体材料的比表面积较大、水热稳定性较高、微孔丰富均一以及表面性质可调,可用于吸附、催化、抗菌、药物输运和水处理。沸石的阳离子交换能力很强。在用离子交换法制备的载银沸石中,Ag主要以Ag+、银团簇和银纳米颗粒三种状态存在。Ag+良好的生物相容性以及银团簇高效和可调的发光性能,受到了极大的关注和深入研究。本文综述了通过离子交换法制备的载银沸石在白光LED以及可调多色发光荧光粉、传感器、抗菌材料、吸附和催化等方面的应用。

关键词 评述无机非金属材料沸石离子交换银团簇应用    
Abstract

Microporous crystalline zeolite materials have large specific surface area, high hydrothermal stability, abundant and uniform micropores and adjustable surface properties, which exhibited promising applications in adsorption, catalysis, antibacteria, drug delivery and water treatment. Zeolite has strong cation exchange ability and the Ag in silver-loaded zeolites prepared by ion-exchange method mainly exists in the following three states: Ag+, silver nanoclusters and silver nanoparticles. Due to the biocompatibility of Ag+ and the efficient and adjustable luminescent performance of silver clusters, they have received wide attention in recent years. This article reviews the applications of silver-loaded zeolites prepared by ion-exchange method in white LEDs and tunable luminescent phosphors, sensors, antibacterial materials, adsorption and catalysis etc.

Key wordsreview    inorganic non-metallic materials    zeolite    ion-exchange    silver clusters    application
收稿日期: 2020-11-16     
ZTFLH:  43045  
基金资助:国家自然科学基金(51872200);上海市自然科学基金(18ZR1441900)
作者简介: 俞建忠,男,1997年生,硕士
图1  用于研究限域于沸石中发光银团簇的表征技术[11]
图2  在不同温度热处理后FAUY中银团簇的发光颜色(a)和样品的CIE色谱(b)、COB设备上的白色发光块体(c)以及电流驱动的COB器件上的白色发光块体(d)[21]
图3  (a)Ag-SOD发光机制模型和(b)Ag+交换不同骨架外阳离子沸石的CIE色谱图及其发光实物图[23, 45]
图4  沿[111]方向观察的NaX沸石3D结构示意图(a)以及D6r笼内形成的Ag NCs、不同比例的Ag+、Eu3+交换浓度样品的发光实物图(b)以及Ag NCs对Eu3+的能量传递(c)[5]
图5  FAUY沸石中阳离子的位点(a)和FAUY沸石中Eu3+离子的不同位点(b)[46]
图6  (a)利用Ag+交换SOD沸石制备白光LED用荧光粉;(b)不同比例的Ag+/Eu3+交换沸石的CIE色谱图及其发光实物图[24]
图7  不同Ag+交换量的LTA(Li)-Agx的发光颜色(a)和在不同温度下LTA(Li)-Ag1的发射光谱(b)和发光颜色与水含量的对应关系(c)[20, 48]
图8  (a)暴露于不同浓度甲醛气氛下的Ag-FAUY的发射光谱;(b)暴露于不同浓度甲醛气氛下发射光谱相对强度的变化(I0:原始强度;I1:暴露于不同浓度甲醛气氛下的强度)和(c)实物照片[22]
图9  沸石/银-氧化石墨烯(Zeo/Ag-GO)纳米复合材料抗菌性的原理[54]
图10  (a)FAU型沸石超笼中银团簇形成及光催化过程示意图;(b)亚纳米银团簇重整甲酸制氢示意图[67]
1 Serati-Nouri H, Jafari A, Roshangar L, et al. Biomedical applications of zeolite-based materials: a review [J]. Mater. Sci. Eng., 2020, 116C: 111225
2 Min J G, Kemp K C, Hong S B. Silver ZK-5 zeolites for selective ethylene/ethane separation [J]. Sep. Purif. Technol., 2020, 250: 117146
3 Wen J, Dong H R, Zeng G M. Application of zeolite in removing salinity/sodicity from wastewater: a review of mechanisms, challenges and opportunities [J]. J. Clean. Prod., 2018, 197: 1435
4 Janićijević D, Uskoković-Marković S, Ranković D, et al. Double active BEA zeolite/silver tungstophosphates - Antimicrobial effects and pesticide removal [J]. Sci. Total Environ., 2020, 735: 139530
5 Shi Y L, Ye S, Liao H Z, et al. Formation of luminescent silver-clusters and efficient energy transfer to Eu3+ in faujasite NaX zeolite [J]. J. Solid State Chem., 2020, 285: 121227
6 Yu J Z, Ye S, Shi Y L, et al. Thermally formation and luminescent performance of silver nanoclusters confined within LTA zeolites [J]. J. Alloys Compd., 2021, 857: 157614
7 Horta-Fraijo P, Smolentseva E, Simakov A, et al. Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction [J]. Microporous Mesoporous Mater., 2020, 312: 110707
8 Fonseca A M, Neves I C. Study of silver species stabilized in different microporous zeolites [J]. Microporous Mesoporous Mater., 2013, 181: 83
9 Dong B, Retoux R, de Waele V, et al. Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters [J]. Microporous Mesoporous Mater., 2017, 244: 74
10 Grandjean D, Coutiño-Gonzalez E, Cuong N T, et al. Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites [J]. Science, 2018, 361: 686
11 Coutiño-Gonzalez E, Baekelant W, Steele J A, et al. Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties [J]. Acc. Chem. Res., 2017, 50: 2353
12 Collins F, Rozhkovskaya A, Outram J G, et al. A critical review of waste resources, synthesis, and applications for Zeolite LTA [J]. Microporous Mesoporous Mater., 2020, 291: 109667
13 Sandomierski M, Strzemiecka B, Voelkel A. The influence of ion exchange in zeolite X on the properties of phenol-formaldehyde composites [J]. Int. J. Adhes. Adhes., 2020, 100: 102625
14 Tong Y S, Yuan D H, Zhang W N, et al. Selective exchange of alkali metal ions on EAB zeolite [J]. J. Energy Chem., 2021, 58: 41
15 Aghakhani S, Grandjean D, Baekelant W, et al. Atomic scale reversible opto-structural switching of few atom luminescent silver clusters confined in LTA zeolites [J]. Nanoscale, 2018, 10: 11467
16 Ma R H, Gao J, Xu Q, et al. Eu2+ promoted formation of molecule-like Ag and enhanced white luminescence of Ag/Eu-codoped oxyfluoride glasses [J]. J. Non-Cryst. Solids, 2016, 432: 348
17 Fenwick O, Coutiño-Gonzalez E, Grandjean D, et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites [J]. Nat. Mater., 2016, 15: 1017
18 Xu X X, Zhao J J, Luo X, et al. Stabilization of fluorescent [Agm]n+ quantum clusters in multiphase inorganic glass-ceramics for white LEDs [J]. ACS Appl. Nano Mater., 2019, 2: 2854
19 De Cremer G, Sels B F, Hotta J I, et al. Optical encoding of silver zeolite microcarriers [J]. Adv. Mater, 2010, 22: 957
20 Coutino-Gonzalez E, Baekelant W, Grandjean D, et al. Thermally activated LTA(Li)-Ag zeolites with water-responsive photoluminescence properties [J]. J. Mater. Chem., 2015, 3C: 11857
21 Yao D C, Xu S, Wang Y G, et al. White-emitting phosphors with high color-rendering index based on silver cluster-loaded zeolites and their application to near-UV LED-based white LEDs [J]. Mater. Chem. Front., 2019, 3: 1080
22 Yao D C, Wang Y G, Li H R. Silver clusters based sensor for low content formaldehyde detection in colorimetric and fluorometric dual Mode [J]. Sens. Actuators, 2020, 305B: 127451
23 Yao D C, Wang Y G, Li P, et al. Luminescent Ag+ exchanged SOD zeolites with their potential applications in white LEDs [J]. Dalton Trans., 2020, 49: 8179
24 Yao D C, Yang J, Xie Y Y, et al. Warm white-light phosphor based on a single-phase of Ag+/Eu3+/Zn2+ loading SOD zeolites with application to white LEDs [J]. J. Alloys Compd., 2020, 823: 153778
25 Binay M I, Kirdeciler S K, Akata B. Development of antibacterial powder coatings using single and binary ion-exchanged zeolite A prepared from local kaolin [J]. Appl. Clay Sci., 2019, 182: 105251
26 Wattanawong N, Aht-Ong D. Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films [J]. Polym. Degrad. Stabil., 2021, 183: 109459
27 Monteiro W F, Diz F M, Andrieu L, et al. Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity [J]. Microporous Mesoporous Mater., 2020, 307: 110508
28 Ferreira L, Fonseca A M, Botelho G, et al. Antimicrobial activity of faujasite zeolites doped with silver [J]. Microporous Mesoporous Mater., 2012, 160: 126
29 Dutta P, Wang B. Zeolite-supported silver as antimicrobial agents [J]. Coord. Chem. Rev., 2019, 383: 1
30 de Cremer G, Coutiño-Gonzalez E, Roeffaers M B J, et al. Characterization of fluorescence in heat-treated silver-exchanged zeolites [J]. J. Am. Chem. Soc., 2009, 131: 3049
31 De Cremer G, Coutiño-Gonzalez E, Roeffaers M B J, et al. In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment [J]. Chemphyschem, 2010, 11: 1627
32 Coutino-Gonzalez E, Roeffaers M B J, Dieu B, et al. Determination and optimization of the luminescence external quantum efficiency of silver-clusters zeolite composites [J]. J. Phys. Chem., 2013, 117C: 6998
33 Dyer A. Ion-exchange properties of zeolites [J]. Stud. Surf. Sci. Catal., 2005, 157: 181
34 Aono H, Yahara K, Johan E, et al. Effect of coexisting lithium content on fluorescent properties of silver ion-exchanged LTA zeolite [J]. J. Ceram. Soc. Jpn., 2020, 128: 670
35 Baekelant W, Aghakhani S, Coutino-Gonzalez E, et al. Shaping the optical properties of silver clusters inside zeolite a via guest-host-guest interactions [J]. J. Phys. Chem. Lett., 2018, 9: 5344
36 Johan E, Kanda Y, Matsue N, et al. Whitish fluorescence of partially Ag-exchanged zeolite Y affected by coexisting cations [J]. J. Lumin., 2019, 213: 482
37 Cametti G, Scheinost A C, Giordani M, et al. Framework modifications and dehydration path of a Ag+-modified zeolite with STI framework type [J]. J. Phys. Chem., 2019, 123: 13651
38 Altantzis T, Coutino-Gonzalez E, Baekelant W, et al. Direct observation of luminescent silver clusters confined in faujasite zeolites [J]. ACS Nano, 2016, 10: 7604
39 Fron E, Aghakhani S, Baekelant W, et al. Structural and photophysical characterization of Ag clusters in LTA zeolites [J]. J. Phys. Chem., 2019, 123: 10630
40 Cuong N T, Nguyen H M, Nguyen M T. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity [J]. Phys. Chem. Chem. Phys., 2013, 15: 15404
41 Fenwick O, Coutiño-Gonzalez E, Richard F, et al. X-ray-induced growth dynamics of luminescent silver clusters in zeolites [J]. Small, 2020, 16: 2002063
42 Liu C M, Qi Z M, Ma C G, et al. High light yield of Sr8(Si4O12)Cl8: Eu2+ under X-ray excitation and its temperature-dependent luminescence characteristics [J]. Chem. Mater., 2014, 26: 3709
43 Wang X J, Funahashi S, Takeda T, et al. Structure and luminescence of a novel orange-yellow-emitting Ca1.62Eu0.38Si5O3N6 phosphor for warm white LEDs, discovered by a single-particle-diagnosis approach [J]. J. Mater. Chem., 2016, 4C: 9968
44 Liu C M, Zhou W J, Shi R, et al. Host-sensitized luminescence of Dy3+ in LuNbO4 under ultraviolet light and low-voltage electron beam excitation: energy transfer and white emission [J]. J. Mater. Chem., 2017, 5C: 9012
45 Lin H, Imakita K, Fujii M, et al. Visible emission from Ag+ exchanged SOD zeolites [J]. Nanoscale, 2015, 7: 15665.
46 Yi X, Sun J Y, Jiang X F, et al. Variations in the 5D07F0-4 transitions of Eu3+ and white light emissions in Ag-Eu exchanged zeolite-Y [J]. RSC Adv., 2016, 6: 95925
47 Ye S, Guo Z, Wang H Y, et al. Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting [J]. J. Alloys Compd., 2016, 685: 891
48 Coutino-Gonzalez E, Baekelant W, Dieu B, et al. Nanostructured Ag-zeolite composites as luminescence-based humidity sensors [J]. J. Vis. Exp., 2016, (117): 54674
49 Hanim S A M, Malek N A N N, Ibrahim Z. Amine-functionalized, silver-exchanged zeolite NaY: preparation, characterization and antibacterial activity [J]. Appl. Surf. Sci., 2016, 360: 121
50 Zhang X F, Liu Z G, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches [J]. Int. J. Mol. Sci., 2016, 17: 1534
51 Cerrillo J L, Palomares A E, Rey F. Silver exchanged zeolites as bactericidal additives in polymeric materials [J]. Microporous Mesoporous Mater., 2020, 305: 110367
52 Durán N, Durán M, de Jesus M B, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity [J]. Nanomedicine, 2016, 12: 789
53 Youssef H F, Hegazy W H, Abo-almaged H H. Preparation and characterization of micronized zeolite Na-A: cytotoxic activity of silver exchanged form [J]. J. Porous Mater., 2015, 22: 1033
54 Abed S, Bakhsheshi-Rad H R, Yaghoubi H, et al. Antibacterial activities of zeolite/silver-graphene oxide nanocomposite in bone implants [J]. Mater. Technol., 2020, 36: 660
55 Li S, Wang Q T, Yu H Q, et al. Preparation of effective Ag-loaded zeolite antibacterial materials by solid phase ionic exchange method [J]. J. Porous Mater., 2018, 25: 1797
56 Milenkovic J, Hrenovic J, Matijasevic D, et al. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates [J]. Environ. Sci. Pollut. Res., 2017, 24: 20273
57 Kolobova E, Pestryakov A, Mamontov G, et al. Low-temperature CO oxidation on Ag/ZSM-5 catalysts: influence of Si/Al ratio and redox pretreatments on formation of silver active sites [J]. Fuel, 2017, 188: 121
58 Panezai H, Sun J H, Jin X Q, et al. Location of silver clusters confined in FAU skeleton of dehydrated bi-metallic AgxM96-x-LSX (M = Na+, Li+) zeolite and resultant influences on N2 and O2 adsorption [J]. Sep. Purif. Technol., 2018, 197: 418
59 Panezai H, Sun J H, Jin X Q. Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2 [J]. AIP Adv., 2016, 6: 125115
60 Bučko T, Chibani S, Paul J F, et al. Dissociative iodomethane adsorption on Ag-MOR and the formation of AgI clusters: an ab initio molecular dynamics study [J]. Phys. Chem. Chem. Phys., 2017, 19: 27530
61 Bosland L, Dickinson S, Glowa G A, et al. Iodine-paint interactions during nuclear reactor severe accidents [J]. Ann. Nucl. Energy, 2014, 74: 184
62 Azambre B, Chebbi M, Hijazi A. Effects of the cation and Si/Al ratio on CH3I adsorption by faujasite zeolites [J]. Chem. Eng. J., 2020, 379: 122308
63 Temerev V L, Vedyagin A A, Afonasenko T N, et al. Effect of Ag loading on the adsorption/desorption properties of ZSM-5 towards toluene [J]. React. Kinet. Mech. Catal., 2016, 119: 629
64 Westermann A, Azambre B. Impact of the zeolite structure and acidity on the adsorption of unburnt hydrocarbons relevant to cold start conditions [J]. J. Phys. Chem., 2016, 120C: 25903
65 Sharma M, Shane M. Hydrocarbon-water adsorption and simulation of catalyzed hydrocarbon traps [J]. Catal. Today, 2016, 267: 82
66 Kyriakidou E A, Lee J, Choi J S, et al. A comparative study of silver- and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications [J]. Catal. Today, 2021, 360: 220
67 El-Roz M, Telegeiev I, Mordvinova N E, et al. Uniform generation of sub-nanometer silver clusters in zeolite cages exhibiting high photocatalytic activity under visible light [J]. ACS Appl. Mater. Interfaces, 2018, 10: 28702
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.