材料研究学报, 2021, 35(11): 801-810 DOI: 10.11901/1005.3093.2020.487

综述

载银沸石应用的研究进展

俞建忠, 许新玲, 叶松,

同济大学材料科学与工程学院 上海 201804

Research Progress on the Applications of Silver-loaded Zeolites

YU Jianzhong, XV Xinling, YE Song,

School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

通讯作者: 叶松,副教授,yesong@tongji.edu.cn,研究方向为光致发光材料

收稿日期: 2020-11-16   修回日期: 2021-04-30   网络出版日期: 2021-11-30

基金资助: 国家自然科学基金.  51872200
上海市自然科学基金.  18ZR1441900

Corresponding authors: YE Song, Tel: 13818652824, E-mail:yesong@tongji.edu.cn

Received: 2020-11-16   Revised: 2021-04-30   Online: 2021-11-30

作者简介 About authors

俞建忠,男,1997年生,硕士

摘要

沸石微孔晶体材料的比表面积较大、水热稳定性较高、微孔丰富均一以及表面性质可调,可用于吸附、催化、抗菌、药物输运和水处理。沸石的阳离子交换能力很强。在用离子交换法制备的载银沸石中,Ag主要以Ag+、银团簇和银纳米颗粒三种状态存在。Ag+良好的生物相容性以及银团簇高效和可调的发光性能,受到了极大的关注和深入研究。本文综述了通过离子交换法制备的载银沸石在白光LED以及可调多色发光荧光粉、传感器、抗菌材料、吸附和催化等方面的应用。

关键词: 评述 ; 无机非金属材料 ; 沸石 ; 离子交换 ; 银团簇 ; 应用

Abstract

Microporous crystalline zeolite materials have large specific surface area, high hydrothermal stability, abundant and uniform micropores and adjustable surface properties, which exhibited promising applications in adsorption, catalysis, antibacteria, drug delivery and water treatment. Zeolite has strong cation exchange ability and the Ag in silver-loaded zeolites prepared by ion-exchange method mainly exists in the following three states: Ag+, silver nanoclusters and silver nanoparticles. Due to the biocompatibility of Ag+ and the efficient and adjustable luminescent performance of silver clusters, they have received wide attention in recent years. This article reviews the applications of silver-loaded zeolites prepared by ion-exchange method in white LEDs and tunable luminescent phosphors, sensors, antibacterial materials, adsorption and catalysis etc.

Keywords: review ; inorganic non-metallic materials ; zeolite ; ion-exchange ; silver clusters ; application

PDF (4915KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

俞建忠, 许新玲, 叶松. 载银沸石应用的研究进展. 材料研究学报[J], 2021, 35(11): 801-810 DOI:10.11901/1005.3093.2020.487

YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites. Chinese Journal of Materials Research[J], 2021, 35(11): 801-810 DOI:10.11901/1005.3093.2020.487

沸石是一种无机晶体材料,其比表面积较大、水热稳定性较高、微孔结构丰富均一和表面性质可调,可用于吸附、催化、抗菌、药物输运和水处理[1~7]。目前已知的沸石有230多种,其骨架结构由硅氧四面体[SiO4]4-和铝氧四面体[AlO4]5-通过桥氧以不同的连接方式在三维空间构成孔道及笼状结构。沸石的这种均一多孔结构,能为易团聚的金属团簇、量子点等发光中心提供稳定的基质环境[8~11]。另一方面,沸石骨架结构中的[AlO4]5-呈负电,为了获得电中性须引入诸如H+、Na+、K+、Ca2+以及NH4+等骨架外阳离子。因此,沸石具有很强的阳离子置换能力,在金属盐溶液中能发生离子交换反应[5, 12~14]

Ag在固态基质材料中主要有Ag+、银团簇和银纳米颗粒等三种状态。具有辐射发光性能的银团簇只有几个到几百个Ag0或Ag+,例如Ag的二聚体Ag2+、Ag的三聚体Ag32+、以及Ag的多聚体Agmn+等。银团簇的发光性能,与其尺寸和化学状态密切相关。随着构成银团簇的原子或离子数目的增加(即银团簇尺寸的增大),其激发和发射光谱发生红移[15~18]。银团簇不够稳定,会团聚而变成具有SPR吸收特性的银纳米颗粒而失去发光性能,因此需要适合的基质使其稳定其中。用高温退火、X射线和电子束辐照等方法处理Ag+交换沸石,可使Ag+从沸石骨架或吸附水中的O2-捕获电子发生自还原反应产生Ag0,Ag0与Ag+聚集可形成银团簇,而沸石刚性的骨架能为银团簇提供合适而稳定的环境。同时,沸石的多孔限域作用、丰富的拓扑的结构和可调节的Si/Al比等,能限制和调控银团簇的尺寸,使载银沸石具备灵活的可设计性和功能可调性。

限域在不同沸石结构中的银团簇具有分立的能级结构和高效发光,可用于白光LED、传感器、生物成像、吸附和(光)催化[10, 15, 17, 19~24]。同时,银的生物相容性良好、安全和毒性低,Ag+倾向与S、N和O的配体形成络合物,具有良好的抗菌活性。因此,离子交换法制备的载银沸石也是一种抗菌材料[4, 25~29]。本文综述不同拓扑结构和静电性能沸石中银的赋存状态、载银沸石在白光LED及可调发光、传感器、抗菌材料、吸附催化领域的应用研究,并展望进一步研究的方向。

1 银在沸石中的结构和光谱性能

制备载银发光沸石,先用离子交换法使Ag+取代沸石骨架外阳离子,后续不同形式能量的刺激则促使Ag+形成与基质沸石的拓扑结构和静电性能相适的银纳米团簇。银团簇的发光性能与其尺寸和化学状态密切相关,基质沸石的拓扑结构、骨架外阳离子种类、Si/Al比等都在很大程度上影响银的赋存状态。目前研究较多的用于载银的沸石包括FAU、LTA、SOD、EMT,银团簇在这些不同沸石结构中的发光效率有很大差别。例如,银团簇在FAU型沸石中的发光量子效率可达56%,而LTA型沸石则大多低于15% [30~32]。银团簇的发光效率,与载银量和沸石基质的结构有密切的关系。ICP和XPS等结果表明,沸石骨架外离子对Ag+交换效率有直接的影响,其与Ag+的交换优先顺序为Ag>>Cs>K>Na>Li[20, 33]。沸石骨架外离子也影响银团簇的发光波段,以FAU型沸石为例,骨架外离子Na+被Li+或K+交换取代后沸石中银团簇的发光峰位分别发生蓝移和红移,与沸石晶格常数改变引起的晶体场环境变化密切相关。相关研究发现,银团簇在Li沸石中的发光效率更高,表明骨架外阳离子的半径和电荷密度对Ag+的迁移率有很大的影响[34~36]。同时,沸石骨架的硅铝比也在很大程度上影响Ag+离子的交换量。高硅沸石的可交换位点较少,因此Ag+的交换量比较低。另一方面,硅铝比也影响银团簇的化学状态。例如,X型和Y型沸石均属于FAU沸石,但是低硅铝比的X型沸石具有较高的酸性,因此使银在Y型沸石中更具离子性、而在X型沸石中更具原子性[8, 28]

科研人员通过DFT计算、XRD结构精修、HAADF-STEM、EXAFS、ESR、结合稳态荧光光谱等手段(图1),深入研究了沸石中银团簇寡聚体的结构、电负性以及Ag-Ag、Ag-O键合。从能级结构和结构动力学等角度探讨了银团簇在不同沸石基质中发光性能差异的机理,为银团簇的发光调控及应用研究提供了理论基础[10, 11, 15, 35, 37~40]。例如,现有研究结果表明,在LTA沸石中能形成结构不同的[Ag4(H2O)4]2+发光团簇和[Ag6(O4R)14]2+不发光团簇。同时,骨架外阳离子Li+的含量影响Ag-Ag的键长和银团簇的发光性能。调控Li+的含量,可实现从蓝光到红光波段发光[15, 35]。需要指出的是,Ag0 3d5/2轨道的结合能(367.9~368.4 eV)与Ag2O 3d5/2轨道的结合能(367.6~368.5 eV)有一定的重合,为准确判断沸石基质中银的赋存状态和揭示其发光、催化等性能的差异带来了一定的困难[6, 8]。目前有两种解决此问题的思路,其一是通过分析与Ag键合的原子的价态或所处的化学环境得到相关信息,例如在LTA沸石中发光银团簇在空气中被氧化成Ag2O的观点,可通过在O 1s谱中可见Ag2O金属氧化物的峰来证明[6];其二是计算俄歇参数(Ag 3d5/2+Ag M4N45N45或Ag 3d3/2+Ag M5N45N45)以判断Ag的赋存状态。俄歇峰对元素所处的化学环境较为敏感且Ag0和Ag+的俄歇参数相差较大(分别为726.0 eV和724.0 eV),因此具有更高的准确性[6, 8, 17, 41]。目前的研究通过计算Ag的俄歇参数发现,Ag+交换浓度、沸石基质种类及X射线辐照时间等因素使发光银团簇的化学价态不同[17, 41];也有研究者计算Ag的俄歇参数,得到了其在不同的沸石基质中的赋存状态,解释了载银沸石抗菌活性的差异[28]

图1

图1   用于研究限域于沸石中发光银团簇的表征技术[11]

Fig.1   Characterization techniques used to study the luminescent silver clusters confined inside zeolites[11]


2 载银沸石用于白光LED和可调发光

白光LED具有高发光效率、低能耗、持续性强和环保等特点,将取代传统的照明器件[42~44]。限域于沸石中的银团簇的发光效率高,其发光波段与银离子交换的浓度、沸石的拓扑结构、热处理温度以及X射线辐照时间等因素密切相关,且其颜色在可见光范围内可调节,因此在显示用荧光粉领域有广阔的应用前景[5, 6, 21, 23, 30, 34]。研究结果表明,可设定热处理温度调控FAUY沸石中银团簇的发光颜色。如图2a、b所示,在不同温度热处理可实现530 nm左右的绿光发射(200~700℃)、510 nm左右的蓝绿光发射(700~800℃)、以及400~700 nm可见光范围内的白光发射(800~950℃),分别归属于Ag3m+、Ag3m+和(Ag2)+、(Ag2)+和(Ag+)2团簇的发光[21]。这种可调性因银团簇的形成与沸石的骨架结构有关,而高温热处理产生的沸石结构的变化显著影响了产生的银发光中心的类型。在800~850℃热处理使沸石骨架部分崩塌,白光较弱;而在950℃热处理使沸石结构完全崩塌成无定形玻璃态,发出很强的白光。由此制得的白光LED器件,如图2c、d所示。

图2

图2   在不同温度热处理后FAUY中银团簇的发光颜色(a)和样品的CIE色谱(b)、COB设备上的白色发光块体(c)以及电流驱动的COB器件上的白色发光块体(d)[21]

Fig.2   Luminescence color of the silver clusters in FAUY (a) and the CIE chromatogram (b) of the sample after heat treatment at different temperatures, the white luminous block on the COB equipment (c) and white luminescent block on current driven COB device (d) [21]


针对载银SOD沸石体系的发光性能,研究者提出了限域在SOD沸石中的银团簇的LMCT(配体-金属电荷转移跃迁)和MMCT(金属-金属电子转移跃迁)两种发光机制,并建立了Ag-SOD发光机制模型,如图3a所示[45]。调节热处理温度、银离子交换浓度和骨架外阳离子,可调控SOD沸石中银团簇的发光波段,实现从蓝色、黄色、橙色到暖白色的发光,如图3b所示[23]。研究表明,骨架外离子的种类和热处理温度影响SOD沸石结构以及银团簇的形成,从而实现对发光的调控。即由于离子半径的差异,Li+交换Na-SOD沸石使晶格收缩,而Ag+、K+、Cs+等交换使沸石晶格膨胀,较高的热处理温度也使沸石晶格收缩。通过优化离子交换种类和热处理调控载银SOD沸石发光性能的研究结果表明,在800℃热处理使银团簇在K-SOD沸石中发射暖白光,因此,有望成为制备白光LED器件的理想材料。

图3

图3   (a)Ag-SOD发光机制模型和(b)Ag+交换不同骨架外阳离子沸石的CIE色谱图及其发光实物图[23, 45]

Fig.3   Ag-SOD luminescence mechanism model (a) and CIE chromatogram of Ag+ exchange with different extra-framework cations zeolites and their luminescence digital photos (b) [23, 45]


近年来,稀土离子与Ag+双重交换沸石的光学性能也受到了极大的关注。例如,在FAU型沸石中进行Ag+/Eu3+双重交换实现了银团簇对Eu3+的能量传递和可调发光,且证明Eu3+能促进Ag NCs的形成[5, 16, 46, 47]。针对Ag+交换的Na-FAUX沸石发光性能的研究结果表明,在400~600 ℃的最佳温度热处理,使Ag+交换的沸石发射540~550 nm的强绿光。其原因是,在FAUX沸石的D6r笼中生成了Ag3n+团簇,如图4a所示。该研究同时表明,促进银团簇形成的最佳热处理温度依赖Ag+的交换量。进一步,研究者通过稳态光谱和荧光寿命证明了Ag+/Eu3+双重交换的沸石中Ag NCs对Eu3+的能量传递,且随着Eu3+掺入量的提高能量传递的效率也从23.9%提高至73.6%。其发光实物图和能量传递效率,分别如图4b、c所示。

图4

图4   沿[111]方向观察的NaX沸石3D结构示意图(a)以及D6r笼内形成的Ag NCs、不同比例的Ag+、Eu3+交换浓度样品的发光实物图(b)以及Ag NCs对Eu3+的能量传递(c)[5]

Fig.4   3D structure diagram of NaX zeolite observed along the [111] direction and Ag NCs formed in the D6R cage (a), luminescence digital images of Ag+ and Eu3+ exchange zeolites with different loading degree (b) and energy transfer from Ag NCs to Eu3+ (c) [5]


关于在Ag+/Eu3+双重交换的FAUY沸石中Ag NCs对Eu3+能量的传递,亦有报道。相关研究表明,Ag+和Eu3+在沸石内有部分相同的可交换位点,因此存在竞争。由于激光不仅激发沸石表面的Eu3+离子,还能激发位于FAUY沸石深处笼中对称位点(SI,SU)上的Eu3+离子,因此研究者分别以激光和氙灯作为激发光源,通过比较Eu3+:5D07FJ(J=0~2)跃迁引起的发光强度变化揭示了其在Ag+/Eu3+双重交换FAUY型沸石中的分布。图5a给出了所有可能的沸石骨架外阳离子位点,图5b中的蓝色球代表FAUY沸石表面的Eu3+离子,红色球代表FAUY沸石内部的Eu3+离子。该研究同时表明,使用氙灯和激光激发Ag+/Eu3+双重交换的FAUY沸石均可实现白光发射,但是使用激光的可调性更好,因此Ag+/Eu3+双重交换的FAUY沸石在白光照明中有潜在的应用价值[46]

图5

图5   FAUY沸石中阳离子的位点(a)和FAUY沸石中Eu3+离子的不同位点(b)[46]

Fig.5   Sites of cations in FAUY zeolite (a) and Different sites of Eu3+ ions in FAUY zeolite (b) [46]


同时还有报道,在Zn2+部分交换的Na-SOD沸石中,通过调节Ag+和Eu3+的交换比例可制备出系列发射冷蓝白色至暖红白色的荧光粉,如图6a,b所示[24]。XPS结合光谱进一步证明,基质中存在[ZnO4]2-,同时[Ag2]n+团簇最可能位于富含[ZnO4]2-的玻璃相中,表明该体系中的Zn2+对银团簇形成的重要作用。研究者进一步监测了银团簇位于470 nm发射的荧光寿命,结果表明,随着Eu3+含量的提高[Ag2]n+的寿命从3.0 ns逐渐减小到2.5、1.8和1.4 ns,证明了[Ag2]n+团簇对Eu3+的能量传递。

图6

图6   (a)利用Ag+交换SOD沸石制备白光LED用荧光粉;(b)不同比例的Ag+/Eu3+交换沸石的CIE色谱图及其发光实物图[24]

Fig.6   Preparation of phosphors for white LED using Ag+ exchange SOD zeolite (a) and CIE chromatograms of Ag+/Eu3+ exchange zeolites with different loading degree and their luminescence digital photos (b) [24]


3 载银沸石传感器

1956年Milton等合成了LTA型沸石,根据其结构中阳离子的不同可分为3A(K+)、4A(Na+)、5A(Ca2+)三种不同类型,其中Na型的LTA沸石最为常见,其结构式为Na12[(AlO2)12(SiO2)12]·27H2O[12]。限域于LTA沸石中的银团簇的发光性能对水含量极为敏感,使其在湿度传感方面有潜在的应用前景。比利时鲁汶大学的研究者探讨了Li+交换银沸石LTA(Li)-Agx(其中x=1~12)中银交换量和水含量对银团簇发光性能的影响[20, 48]。研究结果表明,银沸石的发射光谱强烈依赖银的交换量:低银交换量的LTA(Li)-Ag1和LTA(Li)-Ag2发射绿光,LTA(Li)-Ag3和LTA(Li)-Ag4发射黄光,而高银交换量下的LTA(Li)-Ag5~12发射红光,如图7a所示。此外,在低银交换量的样品中,水含量的变化显著影响其内部银团簇发光的颜色。在室温下,水含量约为19%的样品发射黄光;在400℃水含量约为2%的样品发射蓝光;而在中间温度对应的完全水合向部分水合过渡的过程中,样品的发光颜色则逐渐由黄色过渡到绿色和蓝绿色,其光谱和发光实物照片如图7b、c所示。利用LTA(Li)-Agx沸石发射光谱对水含量的敏感响应,可制备LTA(Li)-Ag/PEI湿度传感器。

图7

图7   不同Ag+交换量的LTA(Li)-Agx的发光颜色(a)和在不同温度下LTA(Li)-Ag1的发射光谱(b)和发光颜色与水含量的对应关系(c)[20, 48]

Fig.7   LTA(Li)-Agx luminescence color with different Ag+ exchange capacity (a); correspondence between water content and emission spectra and emission colors of LTA(Li)-Ag1 at different temperatures (b, c) [20, 48]


此外,相关研究表明,部分Ag+交换的LTA型沸石在水合-脱水的循环中发生了可逆的光学转换,与限域在LTA沸石方钠石笼中的银纳米团簇原子尺度的结构动力学有关[15]。在水合状态下发射黄绿光的为抗磁性的四面体团簇[Ag4(H2O)4]2+,而在脱水后四面体团簇转变为深色抗磁性的八面体团簇[Ag6(O4R)14]2+。水合阳离子对LTA沸石中银团簇发光性能的可逆转换起着重要作用。由于少数原子/离子形成的团簇具有对原子尺度结构变化的高敏感性,因而在湿度传感、可擦写的光学存储等方面有潜在的应用前景。

甲醛的强烈刺激性,能引起神经中枢损伤和皮肤过敏,已被世界卫生组织(WHO)列为一级致癌物。有研究表明,将Ag+交换的FAU沸石在60℃低温热处理能生成Ag3n+团簇,其在275~335 nm激发下可发射530 nm左右的绿光。这些低温热处理生成的银团簇或银纳米颗粒位于FAUY沸石的孔笼之外,并不稳定,可用于检测低浓度的甲醛,检测限度可达0.1 mg/m3[22]。如图8a~b所示,将Ag-FAUY暴露在不同浓度(80~2560 ppb)的甲醛气氛下,银团簇的发光强度随着甲醛浓度的提高单调降低。数值分析结果表明,两者的对数具有线性关系。紫外吸收光谱和XPS的研究发现,甲醛使Ag-FAUY发光减弱甚至猝灭的原因,是在其表面生成的Ag2O使发光的银团簇减少。此外,暴露在不同甲醛气氛中的样品在日光下自身的颜色也有明显的不同,如图8c所示。因此,可通过比色和荧光两种模式检测低浓度甲醛,且均符合WHO和职业安全与健康标准(OSHA)的检测标准。

图8

图8   (a)暴露于不同浓度甲醛气氛下的Ag-FAUY的发射光谱;(b)暴露于不同浓度甲醛气氛下发射光谱相对强度的变化(I0:原始强度;I1:暴露于不同浓度甲醛气氛下的强度)和(c)实物照片[22]

Fig.8   Emission spectra of Ag-FAUY exposed to different concentrations of formaldehyde (a), changes in the relative intensity of the emission spectrum when exposed to different concentrations of formaldehyde (I0: original intensity; I1: exposure strength to atmosphere with different concentrations of formaldehyde) (b) and digital photos of Ag-FAUY powders at different concentrations of formaldehyde (c) [22]


4 载银沸石抗菌材料

近年来,细菌对抗生素耐药性使人们开始研究广谱抗菌剂。银离子的细胞毒性低、能抑制多种真菌和病毒的生长、还能较为容易的交换到沸石中,因此载银沸石可应用于广谱抗菌材料和肿瘤治疗[4, 27, 49~53]。例如有研究者合成系列ZSM-5沸石/银(Zeo/Ag)、ZSM-5沸石/银-氧化石墨烯(Zeo/Ag-GO)纳米复合材料,并研究其抗菌活性和生物相容性。结果表明,与Zeo/Ag相比,Zeo/Ag-GO纳米复合材料具有对大肠杆菌和金黄色葡萄球菌更优的抗菌活性和生物相容性,能降低骨植入物的感染。其原理在于,银纳米颗粒和Ag+能抑制DNA的复制和ATP的生成,而氧化石墨烯能破坏细菌细胞膜和细胞壁的结构,从而抑制细菌的生成和增殖,如图9所示[54]。同时,载银LTA沸石不仅具有优异的抗菌性能、还具有良好的缓释能力和抗变色性能。Ag+交换浓度、交换时间和温度影响LTA沸石表面和孔道中的银含量,从而影响其抗菌性能[55]

图9

图9   沸石/银-氧化石墨烯(Zeo/Ag-GO)纳米复合材料抗菌性的原理[54]

Fig.9   Antibacterial mechanism of zeolite/silver-graphene oxide (ZeO/Ag-Go) nanocomposites [54]


除了以ZSM-5、LTA作为载体的沸石,Ag+离子交换的FAU型沸石也具有优异的抗菌性能[28]。AgX(9.8%,质量分数)和AgY(9.7%,质量分数)沸石能抑制酿酒酵母菌、白色念珠菌、大肠杆菌和枯草芽孢杆菌,AgY沸石对大肠杆菌和枯草芽孢杆菌的抑制性能更强。XPS结合俄歇参数分析的结果表明,FAU沸石抗菌性能的差异,是Ag的赋存状态不同所致:AgX沸石中的银以金属态存在、AgY沸石中银以离子态Ag+存在,而Ag+具有较好的抗菌活性。AgX沸石和AgY沸石对酿酒酵母菌和白色念珠菌的抗菌活性均较差,因为真核细胞复杂的细胞组织或细胞壁结构使其需要更多的银沸石以抑制其生长。

同时,也有研究者通过与Ag+、Zn2+、Cu2+交换,研究了NZ和LTA沸石的拓扑结构和金属离子对大肠杆菌抗菌活性的影响。结果表明,抗菌性能的差异主要是金属离子的不同所致[56],其抗菌活性能的排序为:Ag-NZ≈Ag-LTA>Cu-NZ≈Cu-LTA>Zn-NZ>>Zn-LTA。

5 载银沸石的吸附和催化性能

载银沸石的多孔结构和可调节的Si/Al比,使其可用于吸附和催化[57~59]。在核安全事故中,重要的是捕获放射性裂变产物。核装置中的碘放射性物质,尤其是碘气溶胶、碘分子和甲基碘(CH3I),具有较高的迁移率和对甲状腺的特异性亲和力[60, 61]。研究表明,银沸石能吸附CH3I并通过调节沸石结构中的骨架外阳离子和Si/Al比优化对CH3I的吸附能力[62]。有研究者定量分析了Cu2+、Na+、Pb2+、H+、Ag+交换FAU(X、Y)沸石吸附100 ℃甲基碘的突破曲线。结果表明,其饱和吸附能力排序为Cu+/Cu2+>Ag+≫Pb2+>Na+>H+。对沸石中Ag+的分散程度以及Si/Al比对CH3I吸附的影响的研究结果表明,较低的Si/Al比和较为分散的Ag+对CH3I有高效吸附性能,而Si/Al比较高会生成大量的零价银纳米颗粒,使其对CH3I的吸附能力降低。

柴油机动车尾气含有C3H6、NOx等有害气体,消除车辆运行前1~3 min碳氢化物和氮氧化物的排放已成为环境保护的重点[63~65]。对在模拟柴油机排气条件下Ag+和Pd2+交换的BEA沸石和Ag+交换的ZSM-5沸石对C3H6和NO的吸附能力的研究结果表明,未进行离子交换的BEA沸石只能吸附C3H6和少量的NO,Ag+交换使其对C3H6和NO的吸附能力提高[66]。在有H2O的情况下Ag+交换的BEA沸石和ZSM-5沸石依旧能吸附C3H6,而Ag/BEA因较高的酸度和较大的比表面积而具有更强的CH3I吸附能力。但是,H2O在一定程度上抑制Ag/BEA对NO的吸附。

研究人员以FAU型沸石作为骨架,在没有模板剂的条件下制备出在可见光下高丰度、均匀稳定、高催化活性的亚纳米银团簇[67]。用此法合成的超小沸石纳米晶(10~30 nm),对原位合成的光活性位点的均匀稳定性以及Ag+的快速还原有重要的意义。为了合成亚纳米团簇(Ag@ZX-V),先引入钒酸盐团簇(VCs, ZX-V)以在沸石笼中引发Agmδ+(m>δ)亚纳米团簇的形成,然后用ZX-V悬浮液光催化还原Ag+生成Ag@ZX-V,其过程如图10a所示。合成的亚纳米银团簇在可见光下具有光催化活性和选择性,是制氢的催化剂。图10b给出了亚纳米银团簇将甲酸重整为H2和CO2的过程。

图10

图10   (a)FAU型沸石超笼中银团簇形成及光催化过程示意图;(b)亚纳米银团簇重整甲酸制氢示意图[67]

Fig.10   Schematic diagram of the formation of silver clusters inside the supercages of FAU zeolite and the photocatalytic process (a) and photocatalytic activity and selectivity of sub-nanometer silver clusters in the reforming of formic acid to H2 and CO2 (b) [67]


6 总结和展望

用离子交换法制备的载银沸石在显示照明、传感探测、吸附催化、生物医疗等领域有广阔的应用前景。沸石丰富的拓扑结构、在一定范围内可调的Si/Al比、较易被交换的骨架外阳离子以及银离子交换量和热处理温度等,为载银沸石性能的调控和优化提供了多种途径和思路。

虽然载银沸石的应用研究取得了一定的进展,但是其机理还有待进一步深入研究。例如,对位于沸石特定位点的银团簇的结构研究较少,银团簇寡聚体的价态难以确定以及银团簇对稀土离子的能量传递机理仍不完善等。以上问题的解决,对进一步优化和拓展载银沸石的应用有重要的意义。

参考文献

Serati-Nouri H, Jafari A, Roshangar L, et al.

Biomedical applications of zeolite-based materials: a review

[J]. Mater. Sci. Eng., 2020, 116C: 111225

[本文引用: 1]

Min J G, Kemp K C, Hong S B.

Silver ZK-5 zeolites for selective ethylene/ethane separation

[J]. Sep. Purif. Technol., 2020, 250: 117146

Wen J, Dong H R, Zeng G M.

Application of zeolite in removing salinity/sodicity from wastewater: a review of mechanisms, challenges and opportunities

[J]. J. Clean. Prod., 2018, 197: 1435

Janićijević D, Uskoković-Marković S, Ranković D, et al.

Double active BEA zeolite/silver tungstophosphates - Antimicrobial effects and pesticide removal

[J]. Sci. Total Environ., 2020, 735: 139530

[本文引用: 2]

Shi Y L, Ye S, Liao H Z, et al.

Formation of luminescent silver-clusters and efficient energy transfer to Eu3+ in faujasite NaX zeolite

[J]. J. Solid State Chem., 2020, 285: 121227

[本文引用: 5]

Yu J Z, Ye S, Shi Y L, et al.

Thermally formation and luminescent performance of silver nanoclusters confined within LTA zeolites

[J]. J. Alloys Compd., 2021, 857: 157614

[本文引用: 4]

Horta-Fraijo P, Smolentseva E, Simakov A, et al.

Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction

[J]. Microporous Mesoporous Mater., 2020, 312: 110707

[本文引用: 1]

Fonseca A M, Neves I C.

Study of silver species stabilized in different microporous zeolites

[J]. Microporous Mesoporous Mater., 2013, 181: 83

[本文引用: 4]

Dong B, Retoux R, de Waele V, et al.

Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters

[J]. Microporous Mesoporous Mater., 2017, 244: 74

Grandjean D, Coutiño-Gonzalez E, Cuong N T, et al.

Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites

[J]. Science, 2018, 361: 686

[本文引用: 2]

Coutiño-Gonzalez E, Baekelant W, Steele J A, et al.

Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties

[J]. Acc. Chem. Res., 2017, 50: 2353

[本文引用: 4]

Collins F, Rozhkovskaya A, Outram J G, et al.

A critical review of waste resources, synthesis, and applications for Zeolite LTA

[J]. Microporous Mesoporous Mater., 2020, 291: 109667

[本文引用: 2]

Sandomierski M, Strzemiecka B, Voelkel A.

The influence of ion exchange in zeolite X on the properties of phenol-formaldehyde composites

[J]. Int. J. Adhes. Adhes., 2020, 100: 102625

Tong Y S, Yuan D H, Zhang W N, et al.

Selective exchange of alkali metal ions on EAB zeolite

[J]. J. Energy Chem., 2021, 58: 41

[本文引用: 1]

Aghakhani S, Grandjean D, Baekelant W, et al.

Atomic scale reversible opto-structural switching of few atom luminescent silver clusters confined in LTA zeolites

[J]. Nanoscale, 2018, 10: 11467

[本文引用: 5]

Ma R H, Gao J, Xu Q, et al.

Eu2+ promoted formation of molecule-like Ag and enhanced white luminescence of Ag/Eu-codoped oxyfluoride glasses

[J]. J. Non-Cryst. Solids, 2016, 432: 348

[本文引用: 1]

Fenwick O, Coutiño-Gonzalez E, Grandjean D, et al.

Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites

[J]. Nat. Mater., 2016, 15: 1017

[本文引用: 3]

Xu X X, Zhao J J, Luo X, et al.

Stabilization of fluorescent [Agm]n+ quantum clusters in multiphase inorganic glass-ceramics for white LEDs

[J]. ACS Appl. Nano Mater., 2019, 2: 2854

[本文引用: 1]

De Cremer G, Sels B F, Hotta J I, et al.

Optical encoding of silver zeolite microcarriers

[J]. Adv. Mater, 2010, 22: 957

[本文引用: 1]

Coutino-Gonzalez E, Baekelant W, Grandjean D, et al.

Thermally activated LTA(Li)-Ag zeolites with water-responsive photoluminescence properties

[J]. J. Mater. Chem., 2015, 3C: 11857

[本文引用: 4]

Yao D C, Xu S, Wang Y G, et al.

White-emitting phosphors with high color-rendering index based on silver cluster-loaded zeolites and their application to near-UV LED-based white LEDs

[J]. Mater. Chem. Front., 2019, 3: 1080

[本文引用: 4]

Yao D C, Wang Y G, Li H R.

Silver clusters based sensor for low content formaldehyde detection in colorimetric and fluorometric dual Mode

[J]. Sens. Actuators, 2020, 305B: 127451

[本文引用: 3]

Yao D C, Wang Y G, Li P, et al.

Luminescent Ag+ exchanged SOD zeolites with their potential applications in white LEDs

[J]. Dalton Trans., 2020, 49: 8179

[本文引用: 4]

Yao D C, Yang J, Xie Y Y, et al.

Warm white-light phosphor based on a single-phase of Ag+/Eu3+/Zn2+ loading SOD zeolites with application to white LEDs

[J]. J. Alloys Compd., 2020, 823: 153778

[本文引用: 4]

Binay M I, Kirdeciler S K, Akata B.

Development of antibacterial powder coatings using single and binary ion-exchanged zeolite A prepared from local kaolin

[J]. Appl. Clay Sci., 2019, 182: 105251

[本文引用: 1]

Wattanawong N, Aht-Ong D.

Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films

[J]. Polym. Degrad. Stabil., 2021, 183: 109459

Monteiro W F, Diz F M, Andrieu L, et al.

Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity

[J]. Microporous Mesoporous Mater., 2020, 307: 110508

[本文引用: 1]

Ferreira L, Fonseca A M, Botelho G, et al.

Antimicrobial activity of faujasite zeolites doped with silver

[J]. Microporous Mesoporous Mater., 2012, 160: 126

[本文引用: 3]

Dutta P, Wang B.

Zeolite-supported silver as antimicrobial agents

[J]. Coord. Chem. Rev., 2019, 383: 1

[本文引用: 1]

de Cremer G, Coutiño-Gonzalez E, Roeffaers M B J, et al.

Characterization of fluorescence in heat-treated silver-exchanged zeolites

[J]. J. Am. Chem. Soc., 2009, 131: 3049

[本文引用: 2]

De Cremer G, Coutiño-Gonzalez E, Roeffaers M B J, et al.

In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment

[J]. Chemphyschem, 2010, 11: 1627

Coutino-Gonzalez E, Roeffaers M B J, Dieu B, et al.

Determination and optimization of the luminescence external quantum efficiency of silver-clusters zeolite composites

[J]. J. Phys. Chem., 2013, 117C: 6998

[本文引用: 1]

Dyer A.

Ion-exchange properties of zeolites

[J]. Stud. Surf. Sci. Catal., 2005, 157: 181

[本文引用: 1]

Aono H, Yahara K, Johan E, et al.

Effect of coexisting lithium content on fluorescent properties of silver ion-exchanged LTA zeolite

[J]. J. Ceram. Soc. Jpn., 2020, 128: 670

[本文引用: 2]

Baekelant W, Aghakhani S, Coutino-Gonzalez E, et al.

Shaping the optical properties of silver clusters inside zeolite a via guest-host-guest interactions

[J]. J. Phys. Chem. Lett., 2018, 9: 5344

[本文引用: 2]

Johan E, Kanda Y, Matsue N, et al.

Whitish fluorescence of partially Ag-exchanged zeolite Y affected by coexisting cations

[J]. J. Lumin., 2019, 213: 482

[本文引用: 1]

Cametti G, Scheinost A C, Giordani M, et al.

Framework modifications and dehydration path of a Ag+-modified zeolite with STI framework type

[J]. J. Phys. Chem., 2019, 123: 13651

[本文引用: 1]

Altantzis T, Coutino-Gonzalez E, Baekelant W, et al.

Direct observation of luminescent silver clusters confined in faujasite zeolites

[J]. ACS Nano, 2016, 10: 7604

Fron E, Aghakhani S, Baekelant W, et al.

Structural and photophysical characterization of Ag clusters in LTA zeolites

[J]. J. Phys. Chem., 2019, 123: 10630

Cuong N T, Nguyen H M, Nguyen M T.

Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity

[J]. Phys. Chem. Chem. Phys., 2013, 15: 15404

[本文引用: 1]

Fenwick O, Coutiño-Gonzalez E, Richard F, et al.

X-ray-induced growth dynamics of luminescent silver clusters in zeolites

[J]. Small, 2020, 16: 2002063

[本文引用: 2]

Liu C M, Qi Z M, Ma C G, et al.

High light yield of Sr8(Si4O12)Cl8: Eu2+ under X-ray excitation and its temperature-dependent luminescence characteristics

[J]. Chem. Mater., 2014, 26: 3709

[本文引用: 1]

Wang X J, Funahashi S, Takeda T, et al.

Structure and luminescence of a novel orange-yellow-emitting Ca1.62Eu0.38Si5O3N6 phosphor for warm white LEDs, discovered by a single-particle-diagnosis approach

[J]. J. Mater. Chem., 2016, 4C: 9968

Liu C M, Zhou W J, Shi R, et al.

Host-sensitized luminescence of Dy3+ in LuNbO4 under ultraviolet light and low-voltage electron beam excitation: energy transfer and white emission

[J]. J. Mater. Chem., 2017, 5C: 9012

[本文引用: 1]

Lin H, Imakita K, Fujii M, et al.

Visible emission from Ag+ exchanged SOD zeolites

[J]. Nanoscale, 2015, 7: 15665.

[本文引用: 3]

Yi X, Sun J Y, Jiang X F, et al.

Variations in the 5D07F0-4 transitions of Eu3+ and white light emissions in Ag-Eu exchanged zeolite-Y

[J]. RSC Adv., 2016, 6: 95925

[本文引用: 4]

Ye S, Guo Z, Wang H Y, et al.

Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting

[J]. J. Alloys Compd., 2016, 685: 891

[本文引用: 1]

Coutino-Gonzalez E, Baekelant W, Dieu B, et al.

Nanostructured Ag-zeolite composites as luminescence-based humidity sensors

[J]. J. Vis. Exp., 2016, (117): 54674

[本文引用: 3]

Hanim S A M, Malek N A N N, Ibrahim Z.

Amine-functionalized, silver-exchanged zeolite NaY: preparation, characterization and antibacterial activity

[J]. Appl. Surf. Sci., 2016, 360: 121

[本文引用: 1]

Zhang X F, Liu Z G, Shen W, et al.

Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches

[J]. Int. J. Mol. Sci., 2016, 17: 1534

Cerrillo J L, Palomares A E, Rey F.

Silver exchanged zeolites as bactericidal additives in polymeric materials

[J]. Microporous Mesoporous Mater., 2020, 305: 110367

Durán N, Durán M, de Jesus M B, et al.

Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity

[J]. Nanomedicine, 2016, 12: 789

Youssef H F, Hegazy W H, Abo-almaged H H.

Preparation and characterization of micronized zeolite Na-A: cytotoxic activity of silver exchanged form

[J]. J. Porous Mater., 2015, 22: 1033

[本文引用: 1]

Abed S, Bakhsheshi-Rad H R, Yaghoubi H, et al.

Antibacterial activities of zeolite/silver-graphene oxide nanocomposite in bone implants

[J]. Mater. Technol., 2020, 36: 660

[本文引用: 3]

Li S, Wang Q T, Yu H Q, et al.

Preparation of effective Ag-loaded zeolite antibacterial materials by solid phase ionic exchange method

[J]. J. Porous Mater., 2018, 25: 1797

[本文引用: 1]

Milenkovic J, Hrenovic J, Matijasevic D, et al.

Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates

[J]. Environ. Sci. Pollut. Res., 2017, 24: 20273

[本文引用: 1]

Kolobova E, Pestryakov A, Mamontov G, et al.

Low-temperature CO oxidation on Ag/ZSM-5 catalysts: influence of Si/Al ratio and redox pretreatments on formation of silver active sites

[J]. Fuel, 2017, 188: 121

[本文引用: 1]

Panezai H, Sun J H, Jin X Q, et al.

Location of silver clusters confined in FAU skeleton of dehydrated bi-metallic AgxM96-x-LSX (M = Na+, Li+) zeolite and resultant influences on N2 and O2 adsorption

[J]. Sep. Purif. Technol., 2018, 197: 418

Panezai H, Sun J H, Jin X Q.

Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2

[J]. AIP Adv., 2016, 6: 125115

[本文引用: 1]

Bučko T, Chibani S, Paul J F, et al.

Dissociative iodomethane adsorption on Ag-MOR and the formation of AgI clusters: an ab initio molecular dynamics study

[J]. Phys. Chem. Chem. Phys., 2017, 19: 27530

[本文引用: 1]

Bosland L, Dickinson S, Glowa G A, et al.

Iodine-paint interactions during nuclear reactor severe accidents

[J]. Ann. Nucl. Energy, 2014, 74: 184

[本文引用: 1]

Azambre B, Chebbi M, Hijazi A.

Effects of the cation and Si/Al ratio on CH3I adsorption by faujasite zeolites

[J]. Chem. Eng. J., 2020, 379: 122308

[本文引用: 1]

Temerev V L, Vedyagin A A, Afonasenko T N, et al.

Effect of Ag loading on the adsorption/desorption properties of ZSM-5 towards toluene

[J]. React. Kinet. Mech. Catal., 2016, 119: 629

[本文引用: 1]

Westermann A, Azambre B.

Impact of the zeolite structure and acidity on the adsorption of unburnt hydrocarbons relevant to cold start conditions

[J]. J. Phys. Chem., 2016, 120C: 25903

Sharma M, Shane M.

Hydrocarbon-water adsorption and simulation of catalyzed hydrocarbon traps

[J]. Catal. Today, 2016, 267: 82

[本文引用: 1]

Kyriakidou E A, Lee J, Choi J S, et al.

A comparative study of silver- and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications

[J]. Catal. Today, 2021, 360: 220

[本文引用: 1]

El-Roz M, Telegeiev I, Mordvinova N E, et al.

Uniform generation of sub-nanometer silver clusters in zeolite cages exhibiting high photocatalytic activity under visible light

[J]. ACS Appl. Mater. Interfaces, 2018, 10: 28702

[本文引用: 3]

/