|
|
Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能 |
左成, 杜云慧( ), 张鹏, 王玉洁, 曹海涛 |
北京交通大学机械与电子控制学院 北京 100044 |
|
Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3 |
ZUO Cheng, DU Yunhui( ), ZHANG Peng, WANG Yujie, Cao Haitao |
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China |
引用本文:
左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
Cheng ZUO,
Yunhui DU,
Peng ZHANG,
Yujie WANG,
Haitao Cao.
Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. Chinese Journal of Materials Research, 2020, 34(8): 621-627.
[1] |
Liu J, Wen Z Y, Wu M M, et al. Progress on studies of the cathode materials for Li-ion batteries. Journal of Inorganic Materials [J], 2002, 17(1): 1
|
[2] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
doi: 10.1038/35104644
pmid: 11713543
|
[3] |
Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939
|
[4] |
Lim S H, Cho J, Lim S H, et al. PVP-Assisted ZrO coating on LiMnO spinel cathode nanoparticles prepared by MnO nanowire templates [J]. Electrochemistry Communications, 2008, 10(10): 1478
|
[5] |
Gong C, Xue, Zhigang, Wen, Sheng, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries [J]. Journal of Power Sources, 2016, 318: 93
|
[6] |
J.-S K, Johnson C S, Thackeray M M. Layered xLiMO2·(1-x)Li2MO3 electrodes for lithium batteries: a study of 0.95Li-Mn0.5-Ni0.5O2·0.05Li2TiO3 [J]. Electrochemistry Communications, 2002, 4(3): 205
|
[7] |
Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
|
[8] |
Croy J R, Kang S H, Balasubramanian M, et al. LiMnO-based composite cathodes for lithium batteries: A novel synthesis approach and new structures [J]. Electrochemistry Communications, 2011, 13(10): 1063
|
[9] |
Cong L N, Gao X G, Ma S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12 [J]. Electrochimica Acta, 2014, 115(Complete): 399
|
[10] |
Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7) [J]. Cheminform, 2008, 40(1): 6095
|
[11] |
Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3- stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
|
[12] |
Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade [J]. Angew Chem Int Ed, 2015, 54(44): 13058
|
[13] |
Xin S, Guo Y G A. Beijing. Electrode materials for lithium secondary batteries with high energy densities [J]. Scientia Sinica, 2011, 41(8): 1229
|
[14] |
ZHANG J, LEI Z, WANG J, et al. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries [J]. ACS Appl Mater Interface, 2015, 7(29): 15821
|
[15] |
Zheng J, Xu P, Meng G, et al. Structural and chemical evolution of Li- and Mn-Rich layered cathode material [J]. Chemistry of Materials, 2015, 27(4): 1381
|
[16] |
Zheng M, Huang J, Quan J, et al. Improved electrochemical performances of layered lithium rich oxide 0.6Li[Li1/3Mn2/3]O2·0.4LiMn5/12Ni5/12Co1/6O2 by Zr doping [J]. Rsc Advances, 2016, 6(25): 20522
doi: 10.1039/C5RA22330J
|
[17] |
Shi S. J, Tu J. P, Tang Y. Y,et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta, 2013, 88(2): 671
doi: 10.1016/j.electacta.2012.10.111
|
[18] |
Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J]. Solid State Ionics, 2008, 179: 1794
|
[19] |
Gao J, Kim J., Manthiram A.. High capacity Li[Li0.2Mn0.54Ni0.13-Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]. Electrochemistry Communications, 2009, 11(1): 84
|
[20] |
Wang Z Y, Liu E Z, Guo L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating [J]. Surf. Coat. Tech., 2013, 235: 570
|
[21] |
Liu X Y, Liu J L, Huang T, et al. CaF2-coated Li1.2Mn0.54-Ni0.13Co0.13O2 as cathode materials for Li-ion batteries [J]. Electrochim. Acta, 2013, 109: 52
doi: 10.1016/j.electacta.2013.07.069
|
[22] |
ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J] Electrochem. Soc., 2008, 155(10): A775
doi: 10.1149/1.2966694
|
[23] |
Wu Y, Murugan A V, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4 [J]. Electrochem. Soc., 2008, 155(9): A635
doi: 10.1149/1.2948350
|
[24] |
Yu H, Wang Y, Asakura D, et al. Electrochemical kinetics of the 0.5Li2MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries [J]. RSC Advances, 2012, 2(23): 8797
doi: 10.1039/c2ra20772a
|
[25] |
Zheng J M, Wu X B, Yang Y. Synthesis optimization, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material of lithium ion battery [J]. Chinese Journal of Power Sources, 2011, 35(10): 1188
|
[26] |
Cho J, Kim Y J, Park B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. Journal of The Electrochemical Society, 2001, 148(10): A1110
|
[27] |
Shaju K. M., Subba Rao G. V., et al, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta, 2003, 48: 145
|
[28] |
Cho Y H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3-Co1/3]O2 prepared by carbonate co-precipitation method [J]. Power Sources, 2005, 142(1-2): 306
|
[29] |
Bonani S, Nomasonto R, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries [J]. Power Sources, 2017, 353: 210
|
[30] |
Zheng J M, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials [J]. Chemistry of Materials, 2014, 26(22): 6320
|
[31] |
Zhang J, Lei Z H, et al. Surface Modification of Li1.2Mn0.54Ni0.13-Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J]. Applied materials and interfaces, 2015, 7: 15821
pmid: 26079270
|
[32] |
Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Reprint of “Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy” [J]. Electroanalytical Chemistry, 2013, 688: 393
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|