Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 611-620    DOI: 10.11901/1005.3093.2019.567
  研究论文 本期目录 | 过刊浏览 |
新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型
程晓农1, 桂香1, 罗锐1(), 徐桂芳1, 袁志钟1, 周宇森1, 高佩1,2
1 江苏大学材料科学与工程学院 镇江 212013
2 江苏银环精密钢管有限公司 宜兴 214203
Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A
CHENG Xiaonong1, GUI Xiang1, LUO Rui1(), XU Guifang1, YUAN Zhizhong1, ZHOU Yuseng1, GAO Pei1,2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2 Jiangsu Yinhuan Precision Steel Tube Co. , Ltd. , Yixing 214203, China
引用本文:

程晓农, 桂香, 罗锐, 徐桂芳, 袁志钟, 周宇森, 高佩. 新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型[J]. 材料研究学报, 2020, 34(8): 611-620.
Xiaonong CHENG, Xiang GUI, Rui LUO, Guifang XU, Zhizhong YUAN, Yuseng ZHOU, Pei GAO. Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. Chinese Journal of Materials Research, 2020, 34(8): 611-620.

全文: PDF(17052 KB)   HTML
摘要: 

进行新型奥氏体耐热钢(CHDG-A)的热压缩实验,研究了在900~1100℃、应变速率为0.01-10 s-1条件下这种钢的热变形特征。结果表明:随着变形温度的提高或应变速率的降低这种钢的流变应力显著降低。基于Arrhenius模型构建了这种材料的本构方程,得到CHDG-A热变形激活能Q为515.618 kJ/mol。微观组织分析结果表明,动态再结晶(DRX)是该材料在实验热变形条件下最主要的软化方式,DRX形核主要通过晶界弓出,变形温度的升高和应变速率降低均有利于再结晶形核。基于真应力-应变曲线求得动态再结晶用Z参数表示的峰值和临界值(σpεpσcεc),并确定了εc/εpσc/σp的比值分别为0.52和0.98。同时,还基于Avrami方程建立了CHDG-A的DRX动力学模型。

关键词 金属材料奥氏体耐热钢热变形Z参数动态再结晶    
Abstract

The deformation behavior and microstructural evolution of a new developed austenitic heat resistant steel CHDG-A were investigated by hot compression tests with strain rate in the range of 0.01-10 s-1 at 900~1100℃. The results show that either increasing the deformation temperature or decreasing the strain rate, the flow stress level reduces remarkably. Accurate constitutive equations were established between peak stress and deformation parameters, i.e., temperature and strain rate by the regression analysis of sine hyperbolic function. The hot deformation activation energy of CHDG-A was calculated to be 515.618 kJ/mol. From the deformed microstructures it is found that dynamic recrystallization (DRX) is the principal softening mechanism during hot working. The DRX process may initiate from nucleus formed at bulging out of grain-boundaries, which can be promoted by the increase of temperature and the decrease of strain rate. The values of peak stress, critical stress, peak strain and critical strain for DRX were determined from the true strain-true stress curves and their equations related to the Zener-Hollomon parameter were obtained. The critical strain and corresponding stress for DRX can be expressed through the parameter Z. The critical ratios of εc/εp and σc/σp are also identified, which are 0.52 and 0.98, respectively. Moreover, the DRX kinetics for CHDG-A can be represented in the form of Avrami equation, and the predicted volume fraction of new grains based on the developed model agrees well with the experimental results.

Key wordsmetallic materials    austenitic heat resistant steel    hot compression    Zener-Hollomon parameter    dynamic recrystallization
收稿日期: 2019-12-05     
ZTFLH:  TG142.71  
基金资助:江苏省高等学校自然科学研究面上项目(19KJB430001);江苏省重点研发计划(BE2017127)
作者简介: 程晓农,男,1958年生,教授
SimpleCSiMnPSNiCrNbCuN
CHDG-A0.030.070.770.0010.00810.2318.10.342.50.5
表1  CHDG-A的化学成分(%,质量分数)
图1  CHDG-A的真应力-应变曲线
图2  峰值应力的实验值与计算值比较
图3  CHDG-A的加工硬化率与应变(T=950℃, ε˙=0.1 s-1)
图4  CHDG-A的加工硬化率和应力的三次多项式拟合曲线
图5  Z参数与εc之间的关系和σc和εp和σp之间的关系
图6  不同变形条件下的ln[-ln(1-XDRX)]与ln[(ε-εc)/εp]关系曲线
图7  CHDG-A的动态再结晶体积分数与应变的关系
图8  CHDG-A高温变形过程中的动态再结晶体积分数计算值与试验值的对比
图9  CHDG-A在1050℃, 0.01 s-1条件下变形至不同应变量下的显微组织
图10  CHDG-A在应变速率为0.1 s-1,不同变形温度下的显微组织
图11  CHDG-A在变形温度为1050℃、不同应变速率下的显微组织
图12  CHDG-A在900℃、1 s-1变形条件下的微观组织演变
图13  CHDG-A在1050℃, 0.01 s-1变形条件下的带衬度图和反极图
[1] Viswanathan R, Henry J F, Tanzosh J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. Journal of Materials Engineering and Performance, 2005, 14(3): 281
[2] Zhao L, Dong X P, Sun F, et al. Microstructure and mechanical properties of super304H ultra supercritical pressure boiler superheater tube after serving for a long time [J]. Materials for Mechanical Engineering, 2013, 36(7): 28
[2] (赵林, 董显平, 孙锋等. Super304H超超临界锅炉过热器管长期服役后的显微组织及力学性能 [J]. 机械工程材料, 2013, 36(7): 28)
[3] Cheng X N, Wang J, Luo R, et al. Plastic deformation behavior and constitutive model of new austenitic stainless steel at high temperature used for ultra super critical power plant [J]. Journal of Plasticity Engineering, 2018, 25(4): 122
[3] (程晓农, 王皎, 罗锐等. 超(超)临界火电用新型奥氏体不锈钢的高温塑性变形行为及本构模型 [J]. 塑性工程学报, 2018, 25(4): 122)
[4] Cheng X N, Zhu J J, Luo R, et al. Hot deformation behavior of new-typed CHDG-A06 austenitic stainless steel [J]. Materials for Mechanical Engineering, 2017, 24(3): 98
[4] (程晓农, 朱晶晶, 罗锐等. 新型CHDG-A06奥氏体不锈钢的热变形行为 [J]. 机械工程材料, 2017, 24(3): 98)
[5] Wang D Y, Wang L Y, Feng X, et al. Creep Properties of Pre-deformed F316 Stainless Steel [J]. Chinese Journal of Materials Research, 2019, 33(7): 497
[5] (王冬颖, 王立毅, 冯鑫等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497)
[6] Zhao X H, Li H, Li M Q. Dynamic recrystallization model of GH696 superalloy [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1551
[6] (许赵华, 李宏, 李淼泉. GH696合金动态再结晶模型 [J]. 中国有色金属学报, 2017, 27(8): 1551)
[7] Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy [J]. Acta. Metall. Sin., 2016, 52(9): 1123
[7] (蔡贇, 孙朝阳, 万李等. AZ80镁合金动态再结晶软化行为研究 [J]. 金属学报, 2016, 52(9): 1123)
[8] Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia, 1996, 44(1): 127
[9] Jonas J J, Poliak E I. The critical strain for dynamic recrystallization in rolling mills [J]. Mater. Sci. Forum, 2003, 426-432: 57
[10] Zhang C B, Liu J, Zhang J X, et al. Mathematical model of dynamic recrystallization for nuclear power 304 austenitic stainless steel [J]. Foundry Equipment and Technology, 2011, 1: 16
[10] (张传滨, 刘洁, 张进学等. 核电用304不锈钢动态再结晶数学模型的建立 [J]. 铸造设备与工艺, 2011, 1: 16)
[11] Zhao X D. Dynamic Recrystallization Behavior of 304 Stainless Steel under Hot Deformation [D]. Shanxi: Taiyuan University of Science and Technology, 2009
[11] (赵晓东. 304不锈钢热变形条件下动态再结晶行为研究 [D]. 山西: 太原科技大学, 2009)
[12] Nkhoma R K C, Siyasiya C W, Stumpf W E. Hot workability of AISI 321 and AISI 304 austenitic stainless steels [J]. Journal of Alloys and Compounds, 2014, 595(13): 103
[13] Wang C J, Feng H, Zheng W J, et al. Dynamic Recrystallization Behavior and Microstructure Evolution of AISI 304N Stainless Steel [J]. Journal of Iron and Steel Research, 2013, 20(10): 107
[14] Du S W, Chen S M. Hot deformation behavior and processing maps of LZ50 steel [J]. Trans. Mater. Heat. Treat, 2016, 37: 223
[14] (杜诗文, 陈双梅. LZ50钢的热变形行为及热加工图 [J]. 材料热处理学报, 2016, 37: 223)
[15] Peng H J, Li D F, Guo Q M, et al. Processing Map and Tube Hot Extrusion of GH690 Alloy [J]. Chinese Journal of Rare Metals, 2012, 36(2): 184
[15] (彭海健, 李德富, 郭青苗等. GH690合金热加工图及管材热挤压实验研究 [J]. 稀有金属, 2012, 36(2): 184)
[16] Du B. Investigation on hot plastic deformation behavior of Hastelloy C-276 Nickel-based alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
[16] (杜彬. Hastelloy C-276镍基合金高温塑性变形行为研究 [D]. 北京: 北京有色金属研究总院, 2013)
[17] Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel [J]. Journal of Applied Physics, 1944, 15(1): 22
[18] Fang X L, Jiang D J. Constitutive descriptions for hot compressed low-pressure rotor steel at elevated high temperature [J]. Journal of Materials Science, 2011, 46(10): 3646
[19] Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys [J]. Acta Materialia, 2008, 56(6): 1288
[20] Kugler G, Turk R. Modeling the dynamic recrystallization under multi-stage hot deformation [J]. Acta Materialia, 2004, 52(15): 4659
[21] He A, Xie G, Zhang H, et al. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel [J]. Materials & Design, 2014, 56(4): 122
[22] Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels [J]. Mater Sci Eng A, 2011, 528: 4133
[23] Mirzadeh H, Parsa M H. Hot deformation and dynamic recrystallization of NiTi intermetallic compound [J]. Journal of Alloys and Compounds, 2014, 614: 56
[24] Zhang C, Zhang L W, Shen W F, et al. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel [J]. Materials & Design, 2016, 90: 804
[25] Wei H L, Liu G Q, Xiao X, et al. Recrystallization behavior of a medium carbon vanadium microalloyed steel [J]. Materials Science and Engineering: A, 2013, 573: 215
[26] Cao F R, Xia F, Xue G Q, Hot tensile deformation behavior and microstructural evolution of a Mg-9.3Li-1.79Al-1.61Zn alloy [J]. Materials & Design, 2016, 92: 44
[27] Sarkar A, Marchattiwar A, Chakravartty J K, et al. Kinetics of dynamic recrystallization in Ti-modified 15Cr-15Ni-2Mo austenitic stainless steel [J]. Journal of Nuclear Material, 2013, 432(1-3): 9
[28] Wan Z, Sun Y, Hu L, et al. Dynamic softening behavior and microstructural characterization of TiAl-based alloy during hot deformation [J]. Materials Characterization, 2017, 130: 25
[29] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [J]. Pergamon Press, Oxford, 2004: 98-103, 427
[30] Mahajan S, Pande C S, Imam M A, et al. Formation of Annealing Twins in F.c.c. Crystals [J]. Acta Mater, 1997, 45(6): 2633
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.