Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 621-627    DOI: 10.11901/1005.3093.2019.579
  研究论文 本期目录 | 过刊浏览 |
Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能
左成, 杜云慧(), 张鹏, 王玉洁, 曹海涛
北京交通大学机械与电子控制学院 北京 100044
Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3
ZUO Cheng, DU Yunhui(), ZHANG Peng, WANG Yujie, Cao Haitao
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
Cheng ZUO, Yunhui DU, Peng ZHANG, Yujie WANG, Haitao Cao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. Chinese Journal of Materials Research, 2020, 34(8): 621-627.

全文: PDF(3949 KB)   HTML
摘要: 

用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。

关键词 无机非金属材料Li1.2Mn0.54Ni0.13Co0.13O2正极材料Al2O3包覆电化学性能    
Abstract

Li1.2Mn0.54Ni0.13Co0.13O2 lithium-rich manganese-based cathode materials were prepared by sol-gel method, then coated with Al2O3 by uniform precipitation method, which further characterized by means of XRD, TEM and electrochemical properties analysis. Results show that the coated material still has the layered structure as its original status, Al2O3 was uniformly coated on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 particles to form a nano-scale coating. The initial discharge capacity of the Li1.2Mn0.54Ni0.13Co0.13O2 powder coated with 0.7% Al2O3 was 251.3 mAh/g under the condition of 0.1 C and 2.0~4.8 V. The first coulombic efficiency is 76.1%, and the capacity retention rate is 92.9% after 100 cycles., and the coating also effectively suppresses the voltage decay during the cycle. The proper amount of Al2O3 coating can effectively improve the electrochemical performance of the cathode material.

Key wordsinorganic non-metallic materials    Li1.2Mn0.54Ni0.13Co0.13O2    cathode material    Al2O3 coating    electrochemical performance
收稿日期: 2019-12-10     
ZTFLH:  TM911  
基金资助:北京市自然科学基金(2162036)
作者简介: 左 成,男,1994年生,硕士
图1  不同Al2O3包覆量Li1.2Mn0.54Ni0.13Co0.13O2的XRD谱图
Coating amount/%, mass fractiona/nmc/nmc/aI(003)/I(104)
Pristine0.285021.423264.99351.2199
0.7%0.284931.422814.99361.2393
1.4%0.285111.423694.99351.2248
表1  不同Al2O3包覆量的Li1.2Mn0.54Ni0.13Co0.13O2的晶胞参数
图2  Al2O3包覆前后样品的TEM照片
图3  不同Al2O3包覆量富锂正极材料的首次充放电曲线

Coating amount

/%, mass fraction

1st charging specificcapacity

/mAh·g-1

1st dischargingspecific capacity/mAh·g-1Irreversiblecapacity loss/mAh·g-1

Coulomb efficiency

/%

pristine297.7213.78471.8%
0.7%330.1251.378.876.1%
1.4%303.7220.982.872.7%
表2  不同Al2O3包覆量富锂正极材料的首次充放电性能
图4  不同Al2O3包覆量富锂正极材料不同循环的放电曲线和中值电压曲线
图5  不同Al2O3包覆量富锂正极材料的循环性能
Coating amoun /%, mass fraction1st discharging specific capacity/mAh·g-1100th discharging specific capacity/mAh·g-1Capacity retention rate after 100 cycles/%
Pristine213.7181.684.9%
0.7%251.3233.792.9%
1.4%220.9194.488%
表3  不同Al2O3包覆量富锂正极材料的循环性能参数
图6  不同Al2O3包覆量富锂正极材料的EIS阻抗谱及其等效电路
Coating amount /%, mass fraction3rd cycle50th cycle
Rs/Ω·cm2RSEI/Ω·cm2RCT/Ω·cm2Rs/Ω·cm2RSEI/Ω·cm2RCT/Ω·cm2
Pristine16.9977.95109.5912.41278.16417.06
0.7%15.898.93100.7313.52106.43234.99
1.4%16.2104.97117.0112.74126.43260.64
表4  不同Al2O3包覆量富锂正极材料等效电路的阻抗
[1] Liu J, Wen Z Y, Wu M M, et al. Progress on studies of the cathode materials for Li-ion batteries. Journal of Inorganic Materials [J], 2002, 17(1): 1
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
doi: 10.1038/35104644 pmid: 11713543
[3] Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939
[4] Lim S H, Cho J, Lim S H, et al. PVP-Assisted ZrO coating on LiMnO spinel cathode nanoparticles prepared by MnO nanowire templates [J]. Electrochemistry Communications, 2008, 10(10): 1478
[5] Gong C, Xue, Zhigang, Wen, Sheng, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries [J]. Journal of Power Sources, 2016, 318: 93
[6] J.-S K, Johnson C S, Thackeray M M. Layered xLiMO2·(1-x)Li2MO3 electrodes for lithium batteries: a study of 0.95Li-Mn0.5-Ni0.5O2·0.05Li2TiO3 [J]. Electrochemistry Communications, 2002, 4(3): 205
[7] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
[8] Croy J R, Kang S H, Balasubramanian M, et al. LiMnO-based composite cathodes for lithium batteries: A novel synthesis approach and new structures [J]. Electrochemistry Communications, 2011, 13(10): 1063
[9] Cong L N, Gao X G, Ma S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12 [J]. Electrochimica Acta, 2014, 115(Complete): 399
[10] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7) [J]. Cheminform, 2008, 40(1): 6095
[11] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3- stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
[12] Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade [J]. Angew Chem Int Ed, 2015, 54(44): 13058
[13] Xin S, Guo Y G A. Beijing. Electrode materials for lithium secondary batteries with high energy densities [J]. Scientia Sinica, 2011, 41(8): 1229
[14] ZHANG J, LEI Z, WANG J, et al. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries [J]. ACS Appl Mater Interface, 2015, 7(29): 15821
[15] Zheng J, Xu P, Meng G, et al. Structural and chemical evolution of Li- and Mn-Rich layered cathode material [J]. Chemistry of Materials, 2015, 27(4): 1381
[16] Zheng M, Huang J, Quan J, et al. Improved electrochemical performances of layered lithium rich oxide 0.6Li[Li1/3Mn2/3]O2·0.4LiMn5/12Ni5/12Co1/6O2 by Zr doping [J]. Rsc Advances, 2016, 6(25): 20522
doi: 10.1039/C5RA22330J
[17] Shi S. J, Tu J. P, Tang Y. Y,et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta, 2013, 88(2): 671
doi: 10.1016/j.electacta.2012.10.111
[18] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J]. Solid State Ionics, 2008, 179: 1794
[19] Gao J, Kim J., Manthiram A.. High capacity Li[Li0.2Mn0.54Ni0.13-Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]. Electrochemistry Communications, 2009, 11(1): 84
[20] Wang Z Y, Liu E Z, Guo L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating [J]. Surf. Coat. Tech., 2013, 235: 570
[21] Liu X Y, Liu J L, Huang T, et al. CaF2-coated Li1.2Mn0.54-Ni0.13Co0.13O2 as cathode materials for Li-ion batteries [J]. Electrochim. Acta, 2013, 109: 52
doi: 10.1016/j.electacta.2013.07.069
[22] ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J] Electrochem. Soc., 2008, 155(10): A775
doi: 10.1149/1.2966694
[23] Wu Y, Murugan A V, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4 [J]. Electrochem. Soc., 2008, 155(9): A635
doi: 10.1149/1.2948350
[24] Yu H, Wang Y, Asakura D, et al. Electrochemical kinetics of the 0.5Li2MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries [J]. RSC Advances, 2012, 2(23): 8797
doi: 10.1039/c2ra20772a
[25] Zheng J M, Wu X B, Yang Y. Synthesis optimization, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material of lithium ion battery [J]. Chinese Journal of Power Sources, 2011, 35(10): 1188
[26] Cho J, Kim Y J, Park B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. Journal of The Electrochemical Society, 2001, 148(10): A1110
[27] Shaju K. M., Subba Rao G. V., et al, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta, 2003, 48: 145
[28] Cho Y H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3-Co1/3]O2 prepared by carbonate co-precipitation method [J]. Power Sources, 2005, 142(1-2): 306
[29] Bonani S, Nomasonto R, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries [J]. Power Sources, 2017, 353: 210
[30] Zheng J M, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials [J]. Chemistry of Materials, 2014, 26(22): 6320
[31] Zhang J, Lei Z H, et al. Surface Modification of Li1.2Mn0.54Ni0.13-Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J]. Applied materials and interfaces, 2015, 7: 15821
pmid: 26079270
[32] Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Reprint of “Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy” [J]. Electroanalytical Chemistry, 2013, 688: 393
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.