|
|
新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型 |
程晓农1, 桂香1, 罗锐1( ), 徐桂芳1, 袁志钟1, 周宇森1, 高佩1,2 |
1 江苏大学材料科学与工程学院 镇江 212013 2 江苏银环精密钢管有限公司 宜兴 214203 |
|
Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A |
CHENG Xiaonong1, GUI Xiang1, LUO Rui1( ), XU Guifang1, YUAN Zhizhong1, ZHOU Yuseng1, GAO Pei1,2 |
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 2 Jiangsu Yinhuan Precision Steel Tube Co. , Ltd. , Yixing 214203, China |
引用本文:
程晓农, 桂香, 罗锐, 徐桂芳, 袁志钟, 周宇森, 高佩. 新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型[J]. 材料研究学报, 2020, 34(8): 611-620.
Xiaonong CHENG,
Xiang GUI,
Rui LUO,
Guifang XU,
Zhizhong YUAN,
Yuseng ZHOU,
Pei GAO.
Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. Chinese Journal of Materials Research, 2020, 34(8): 611-620.
[1] |
Viswanathan R, Henry J F, Tanzosh J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. Journal of Materials Engineering and Performance, 2005, 14(3): 281
|
[2] |
Zhao L, Dong X P, Sun F, et al. Microstructure and mechanical properties of super304H ultra supercritical pressure boiler superheater tube after serving for a long time [J]. Materials for Mechanical Engineering, 2013, 36(7): 28
|
[2] |
(赵林, 董显平, 孙锋等. Super304H超超临界锅炉过热器管长期服役后的显微组织及力学性能 [J]. 机械工程材料, 2013, 36(7): 28)
|
[3] |
Cheng X N, Wang J, Luo R, et al. Plastic deformation behavior and constitutive model of new austenitic stainless steel at high temperature used for ultra super critical power plant [J]. Journal of Plasticity Engineering, 2018, 25(4): 122
|
[3] |
(程晓农, 王皎, 罗锐等. 超(超)临界火电用新型奥氏体不锈钢的高温塑性变形行为及本构模型 [J]. 塑性工程学报, 2018, 25(4): 122)
|
[4] |
Cheng X N, Zhu J J, Luo R, et al. Hot deformation behavior of new-typed CHDG-A06 austenitic stainless steel [J]. Materials for Mechanical Engineering, 2017, 24(3): 98
|
[4] |
(程晓农, 朱晶晶, 罗锐等. 新型CHDG-A06奥氏体不锈钢的热变形行为 [J]. 机械工程材料, 2017, 24(3): 98)
|
[5] |
Wang D Y, Wang L Y, Feng X, et al. Creep Properties of Pre-deformed F316 Stainless Steel [J]. Chinese Journal of Materials Research, 2019, 33(7): 497
|
[5] |
(王冬颖, 王立毅, 冯鑫等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497)
|
[6] |
Zhao X H, Li H, Li M Q. Dynamic recrystallization model of GH696 superalloy [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1551
|
[6] |
(许赵华, 李宏, 李淼泉. GH696合金动态再结晶模型 [J]. 中国有色金属学报, 2017, 27(8): 1551)
|
[7] |
Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy [J]. Acta. Metall. Sin., 2016, 52(9): 1123
|
[7] |
(蔡贇, 孙朝阳, 万李等. AZ80镁合金动态再结晶软化行为研究 [J]. 金属学报, 2016, 52(9): 1123)
|
[8] |
Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia, 1996, 44(1): 127
|
[9] |
Jonas J J, Poliak E I. The critical strain for dynamic recrystallization in rolling mills [J]. Mater. Sci. Forum, 2003, 426-432: 57
|
[10] |
Zhang C B, Liu J, Zhang J X, et al. Mathematical model of dynamic recrystallization for nuclear power 304 austenitic stainless steel [J]. Foundry Equipment and Technology, 2011, 1: 16
|
[10] |
(张传滨, 刘洁, 张进学等. 核电用304不锈钢动态再结晶数学模型的建立 [J]. 铸造设备与工艺, 2011, 1: 16)
|
[11] |
Zhao X D. Dynamic Recrystallization Behavior of 304 Stainless Steel under Hot Deformation [D]. Shanxi: Taiyuan University of Science and Technology, 2009
|
[11] |
(赵晓东. 304不锈钢热变形条件下动态再结晶行为研究 [D]. 山西: 太原科技大学, 2009)
|
[12] |
Nkhoma R K C, Siyasiya C W, Stumpf W E. Hot workability of AISI 321 and AISI 304 austenitic stainless steels [J]. Journal of Alloys and Compounds, 2014, 595(13): 103
|
[13] |
Wang C J, Feng H, Zheng W J, et al. Dynamic Recrystallization Behavior and Microstructure Evolution of AISI 304N Stainless Steel [J]. Journal of Iron and Steel Research, 2013, 20(10): 107
|
[14] |
Du S W, Chen S M. Hot deformation behavior and processing maps of LZ50 steel [J]. Trans. Mater. Heat. Treat, 2016, 37: 223
|
[14] |
(杜诗文, 陈双梅. LZ50钢的热变形行为及热加工图 [J]. 材料热处理学报, 2016, 37: 223)
|
[15] |
Peng H J, Li D F, Guo Q M, et al. Processing Map and Tube Hot Extrusion of GH690 Alloy [J]. Chinese Journal of Rare Metals, 2012, 36(2): 184
|
[15] |
(彭海健, 李德富, 郭青苗等. GH690合金热加工图及管材热挤压实验研究 [J]. 稀有金属, 2012, 36(2): 184)
|
[16] |
Du B. Investigation on hot plastic deformation behavior of Hastelloy C-276 Nickel-based alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
|
[16] |
(杜彬. Hastelloy C-276镍基合金高温塑性变形行为研究 [D]. 北京: 北京有色金属研究总院, 2013)
|
[17] |
Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel [J]. Journal of Applied Physics, 1944, 15(1): 22
|
[18] |
Fang X L, Jiang D J. Constitutive descriptions for hot compressed low-pressure rotor steel at elevated high temperature [J]. Journal of Materials Science, 2011, 46(10): 3646
|
[19] |
Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys [J]. Acta Materialia, 2008, 56(6): 1288
|
[20] |
Kugler G, Turk R. Modeling the dynamic recrystallization under multi-stage hot deformation [J]. Acta Materialia, 2004, 52(15): 4659
|
[21] |
He A, Xie G, Zhang H, et al. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel [J]. Materials & Design, 2014, 56(4): 122
|
[22] |
Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels [J]. Mater Sci Eng A, 2011, 528: 4133
|
[23] |
Mirzadeh H, Parsa M H. Hot deformation and dynamic recrystallization of NiTi intermetallic compound [J]. Journal of Alloys and Compounds, 2014, 614: 56
|
[24] |
Zhang C, Zhang L W, Shen W F, et al. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel [J]. Materials & Design, 2016, 90: 804
|
[25] |
Wei H L, Liu G Q, Xiao X, et al. Recrystallization behavior of a medium carbon vanadium microalloyed steel [J]. Materials Science and Engineering: A, 2013, 573: 215
|
[26] |
Cao F R, Xia F, Xue G Q, Hot tensile deformation behavior and microstructural evolution of a Mg-9.3Li-1.79Al-1.61Zn alloy [J]. Materials & Design, 2016, 92: 44
|
[27] |
Sarkar A, Marchattiwar A, Chakravartty J K, et al. Kinetics of dynamic recrystallization in Ti-modified 15Cr-15Ni-2Mo austenitic stainless steel [J]. Journal of Nuclear Material, 2013, 432(1-3): 9
|
[28] |
Wan Z, Sun Y, Hu L, et al. Dynamic softening behavior and microstructural characterization of TiAl-based alloy during hot deformation [J]. Materials Characterization, 2017, 130: 25
|
[29] |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [J]. Pergamon Press, Oxford, 2004: 98-103, 427
|
[30] |
Mahajan S, Pande C S, Imam M A, et al. Formation of Annealing Twins in F.c.c. Crystals [J]. Acta Mater, 1997, 45(6): 2633
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|