|
|
钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 |
王世琦1,霍文燚1,徐正超2,张旭海1,周雪峰1,方峰1( ) |
1. 东南大学材料科学与工程学院 南京 211189 2. 张家港格林台科环保设备有限公司 苏州 215625 |
|
Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance |
WANG Shiqi1,HUO Wenyi1,XU Zhengchao2,ZHANG Xuhai1,ZHOU Xuefeng1,FANG Feng1( ) |
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2. Zhangjiagang Green Tech Environmental Protection Equipment Co. , LTD. , Suzhou 215625, China |
引用本文:
王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.
Shiqi WANG,
Wenyi HUO,
Zhengchao XU,
Xuhai ZHANG,
Xuefeng ZHOU,
Feng FANG.
Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. Chinese Journal of Materials Research, 2020, 34(3): 176-182.
[1] | Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37 | [2] | Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Adv. Mater., 2012, 43(10): 229 | [3] | Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Cheminform, 2007, 107(7): 2891 | [4] | Wang Y, Feng C, Zhang M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen [J]. Appl. Catal. B-Environ., 2010, 100(1-2): 84 | [5] | Mor G K, Prakasam H E, Varghese O K, et al. Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis [J]. Nano. Lett., 2007, 7(8): 2356 | [6] | Ganesh I, Gupta A K, Kumar P P, et al. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications [J]. Mater. Chem. Phys., 2012, 135 (1): 220 | [7] | Hidalgo M C, Maicu M, Nav?o J A, et al. Effect of Sulfate Pretreatment on Gold-Modified TiO2 for Photocatalytic Applications [J]. J. Phys. Chem. C., 2009, 113 (29): 12840 | [8] | Pugazhenthiran N, Murugesan S, Anandan S. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium [J]. J. Hazard. Mater., 2013, 263: 541 | [9] | Yu H, Wang X, Sun H, et al. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film [J]. J. Hazard. Mater., 2010, 184 (1-3): 753 | [10] | Liu Y, Wang Z, Huang W. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts [J]. Appl. Surf. Sci., 2016, 389: 760 | [11] | Huang C, Lv Y, Zhou Q, et al. Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group [J]. Ceram. Int., 2014, 40(5): 7093 | [12] | Ong K G, Varghese O K, Mor G K, et al. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J]. Sol. Energ. Mat. Sol. C., 2007, 91(4): 250 | [13] | Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano. Lett., 2005, 5 (1): 191 | [14] | Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water. Res., 2010, 44(10): 2997 | [15] | Li S, Cai J, Wu X, et al. TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol [J]. J. Hazard. Mater., 2018, 346 | [16] | Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. J. Environ. Manage., 2011, 92(3): 407 | [17] | Yousefi S M, Shemirani F. Selective and sensitive speciation analysis of Cr (VI) and Cr (III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction [J]. J. Hazard. Mater., 2013, 254-255: 134 | [18] | Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays [J]. Rsc. Adv., 2014, 4(33): 17300 | [19] | Sadanandam G, Lalitha K, Kumari V D, et al. Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation [J]. Int. J. Hydrogen Energ., 2013, 38(23): 9655 | [20] | Janio V, Fernando B, Guaglianoni W C, et al. Cobalt-doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Water Splitting Applications [J]. Appl. Surf. Sci., 2018:S0169433218325091 | [21] | Chanda A, Rout K, Vasundhara M, et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles [J]. Rsc. Adv., 2018, 8(20): 10939 | [22] | Pan D, Huang H, Wang X, et al. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors [J]. J. Mater. Chem. A., 2014, 2(29): 11454 | [23] | Zhao Z, Sun Z, Zhao H, et al. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets [J]. J. Mater. Chem., 2012, 22(41): 21965 | [24] | Aijo J K, Naduvath J, Mallick S, et al. A novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes [J]. Nanoscale, 2015, 7(48): 20386 | [25] | Choi H C, Jung Y M, Kim S B. Size effects in the Raman spectra of TiO2 nanoparticles [J]. Vib. Spectrosc., 2005, 37(1): 33 | [26] | Zhang Y, Farsinezhad S, Wiltshire B D, et al. Optical Anisotropy in Vertically Oriented TiO2 Nanotube Arrays [J]. Nanotechnology, 2017, 28(37) | [27] | Zhang W F, He Y L, Zhang M S, et al. Raman Scattering Study on Anatase TiO2 Nanocrystals [J]. J. Phys. D. Appl. Phys., 2000, 33 (8): 912 | [28] | Yu J, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays [J]. J. Mater. Chem. A., 2015, (44): 22218 | [29] | Dhanalakshmi J, Iyyapushpam S, Nishanthi S T, et al. Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra [J]. Adv. Nat. Sci-Nanosci., 2017, 8(1): 015015 | [30] | Li D Z, Zhen Y, Fu X Z. Photoluminescence of nano-TiO2 [J]. Chin. J. Mater. Res., 2000, 14(6): 639 | [30] | 李旦振; 郑宜; 付贤智. 纳米二氧化钛的光致发光 [J]. 材料研究学报, 2000, 14(6): 639 | [31] | Ni M, Leung M, Leung D, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renew. Sust. Energ. Rev., 2007, 11(3): 401 | [32] | Iwasaki M, Hara M, Kawada H, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light [J]. J. Colloid Interface Sci., 2000, 224(1): 202 | [33] | Yoneyama H, Yamashita&Amp Y, Tamura H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts [J]. Nature, 1979, 282(5741): 817 | [34] | Alt?n ?lknur, MünevverS?kmen n, ZekeriyaB?y?kl?o?l u. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal [J]. Mat. Sci. Semicon. Proc., 2016, 45: 36 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|