Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 169-175    DOI: 10.11901/1005.3093.2019.429
  研究论文 本期目录 | 过刊浏览 |
静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜
巩桂芬1(),李泽1,王磊2,崔巍巍1
1. 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
2. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
Electrospinning TiO2 Modified Biphenyl Polyimide Lithium Ion Battery Separator
GONG Guifen1(),LI Ze1,WANG Lei2,CUI Weiwei1
1. School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150040,China
2. College of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,China
引用本文:

巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
Guifen GONG, Ze LI, Lei WANG, Weiwei CUI. Electrospinning TiO2 Modified Biphenyl Polyimide Lithium Ion Battery Separator[J]. Chinese Journal of Materials Research, 2020, 34(3): 169-175.

全文: PDF(2638 KB)   HTML
摘要: 

先采用高压静电纺丝技术制备二氧化钛/聚酰胺酸(TiO2/PAA)复合纤维膜,然后对其进行热亚胺化处理制备出二氧化钛/聚酰亚胺(TiO2/PI)复合纤维隔膜。使用扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)、热失重分析仪和电化学工作站测试了TiO2/PI复合纤维隔膜的基本性能和电化学性能,结果表明:隔膜具有明显的三维网状结构,与未改性的纯PI隔膜相比,改性后TiO2/PI复合纤维隔膜的拉伸强度、孔隙率和吸液率分别提高到16.74 MPa、77.5%和550%;其热收缩性能较好,整体电化学性能优异。制备的LiFePO4(磷酸铁锂正极)/TiO2/PI/C(石墨负极)电池具有优异的循环稳定性和高放电容量,在1 C条件下进行100个循环后,其库伦效率在25℃和120℃高达96.7%和90.7%。

关键词 有机高分子材料TiO2联苯型聚酰亚胺锂离子电池隔膜高压静电纺丝电化学性能    
Abstract

TiO2/PAA composite fiber membranes were prepared by high-voltage electrospinning, and then were thermally imidized to obtain TiO2/PI composite fiber membranes. The physical properties, mechanical properties and electrochemical properties of TiO2/PI composite fiber separators were assessed by means of scanning electron microscope, Fourier infrared spectrometer, thermogravimetric analyzer and electrochemical workstation. The results show that the membrane have clear three-dimensional network structure, and the tensile strength, the porosity and the liquid absorption rate of the modified TiO2/PI composite membrane increase to 16.74 MPa, 77.5% and 550%, respectively comparing with the plain PI membrane; the membrane have good thermal shrinkage performance; excellent overall electrochemical performance; the prepared Li-battery of LiFePO4 (lithium iron phosphate positive electrode)/TiO2/PI/C (graphite negative electrode) presents excellent cycle stability and high discharge capacity, after 100 cycles at 1 C、at 25°C and 120°C, the cell coulombic efficiency is as high as 96.7% and 90.7%, respectively.

Key wordsorganic polymer materials    TiO2    biphenyl polyimides    lithium battery separator    electro-spinning    electrochemical property
收稿日期: 2019-09-03     
ZTFLH:  TQ322.4+2  
基金资助:国家自然科学基金(51603075)
作者简介: 巩桂芬,女,1966年生,博士
图1  隔膜的红外光谱图
图2  不同TiO2含量的TiO2/PI复合纤维膜的SEM照片
TiO2 content0%1%2%3%4%5%
Porosity rate/%66.771.174.476.377.575.2
表1  不同TiO2含量的TiO2/PI复合隔膜的孔隙率
图3  不同TiO2含量的TiO2/PI复合隔膜的吸液率
图4  不同TiO2含量的TiO2/PI复合隔膜的TG曲线
SampleDirectionThermal shrinkage/%
100℃150℃200℃250℃
PPLongitudinal4.1---
Horizontal7.9---
PILongitudinal0001.7
Horizontal0001.4
TiO2/PILongitudinal0001.5
Horizontal0001.0
表2  PP、PI和TiO2/PI隔膜分别在100、150、200和250℃热处理后的尺寸稳定性
图5  不同TiO2含量的TiO2/PI复合隔膜的TG曲线
图6  隔膜的电化学稳定窗口
图7  PP、PI和TiO2/PI隔膜的Nyquist图 (a) “Li/隔膜/Li”体系, (b) “SS/隔膜/SS”体系
图8  使用PP、PI和TiO2/PI复合隔膜装配的电池在1 C和不同温度的循环寿命图
[1] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective [J]. J. Am. Chem. Soc., 2013, 135: 1167
[2] Aemand M, Tarascon J M. Building better batteries [J]. Nature, 2008, 451: 652
[3] Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures [J]. Nature, 2016, 529: 515
[4] Ding Y C, Hou H Q, Zhao Y, et al. Electrospun polyimide nanofibers and their applications [J]. Prog. Polym. Sci., 2016, 61: 67
[5] Yoshino A. The birth of the lithium-ion battery [J]. Angew. Chem. Int. Ed., 2012, 51: 5798
[6] Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery [J]. J. Power Sour., 1999, 81-82: 902
[7] Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. J. Power Sour., 2013, 226: 272
[8] Gong G F, Wang L, Xu A W. Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning [J]. Acta Mater. Compos. Sin., 2018, 35: 478
[8] 巩桂芬, 王磊, 徐阿文. 静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能 [J]. 复合材料学报, 2018, 35: 478
[9] Gong G F, Wang L, Li Z. Electrochemical properties of lithium ethylene-vinyl alcohol copolymer sulfate/polyimide Li-ion battery separator composite by electrospinning [J]. Acta Mater. Compos. Sin., 2018, 35: 2632
[9] 巩桂芬, 王磊, 李泽. 静电纺聚乙烯-乙烯醇磺酸锂/聚酰亚胺锂离子电池隔膜复合材料的电化学性能 [J]. 复合材料学报, 2018, 35: 2632
[10] Zhang Y L, Cao W Q, Cai Y Z, et al. Rational design of NiFe2O4-rGO by tuning the compositional chemistry and its enhanced performance for a Li-ion battery anode [J]. Inorg. Chem. Front., 2019, 6: 961
[11] Cai Y Z, Cao W Q, Zhang Y L, et al. Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes [J]. J. Alloys Compd., 2019, 811: 152011
[12] Xiong M, Tang H L, Wang Y D, et al. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance [J]. Carbohyd. Polym., 2014, 101: 1140
[13] Yang C L, Li Z H, Li W Jet al. Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries [J]. J. Memb. Sci., 2015, 495: 341
[14] Cao L Y, An P, Xu Z W, et al. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries [J]. J. Electroanal. Chem., 2016, 767: 34
[15] Huang X S. Separator technologies for lithium-ion batteries [J]. J. Solid State Electrochem., 2011, 15: 649
[16] Qu W. Study on properties of ceramic modified separator for lithium ion batteries [J]. Light Ind. Sci. Technol., 2019, 35(4): 49
[16] 瞿威. 锂离子电池用陶瓷改性隔膜性能研究 [J]. 轻工科技, 2019, 35(4): 49
[17] Gong G F, Wang L, Lan J. Electrochemical properties of EVOH-SO3Li/PET lithium ion battery separator via electrospinning [J]. J. Mater. Eng., 2018, 46(3): 7
[17] 巩桂芬, 王 磊, 兰 健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能 [J]. 材料工程, 2018, 46(3): 7
[18] Wang S, Zhang D L, Shao Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towar-ds safer lithium-ion battery [J]. Carbohyd. Polym., 2019, 214: 328
[19] Chen H L, Jiao X N, Ke P. Preparation and properties of orientation reinforced composite separator for lithium-ion battery [J]. J. Textile Res., 2018, 39(7): 8
[19] 陈洪立, 焦晓宁, 柯 鹏. 取向增强复合锂离子电池隔膜的制备及其性能 [J]. 纺织学报, 2018, 39(7): 8
[20] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. J. Electrostat., 1995, 35: 151
[21] Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model [J]. Polymer, 2007, 48: 6913
[22] Wang M C, Wu R R, Cao H B, et al. Preparation and application of electrospun polyimide nanofibrers [J]. High-tech Fibers Appl., 2012, 37(6): 62
[22] 王敏超, 吴瑢蓉, 曹厚宝等. 静电纺聚酰亚胺纳米纤维的制备及其应用 [J]. 高科技纤维与应用, 2012, 37(6): 62
[23] Tian Y C, Zhang H P, Li B C, et al. Structure and properties of electrospun polyacrylonitrile/graphene carbon nanofibers [J]. J. Text. Res., 2018, 39(10): 24
[23] 田银彩, 张浩鹏, 李博琛等. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能 [J]. 纺织学报, 2018, 39(10): 24
[24] Yan X R, Marini J, Mulligan R, et al. Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers [J]. PLoS One, 2015, 10: e0125407
[25] Wang Q J, Jian Z X, Song W L, et al. Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries [J]. Electrochim. Acta, 2014, 149: 176
[26] Shayapat J, Chung O H, Park J S. Electrospun polyimide-composite separator for lithium-ion batteries [J]. Electrochim. Acta, 2015, 170: 110
[27] Li X T, Wang G, Huang L J, et al. Significant enhancement in dielectric constant of polyimide thin films by doping zirconia nanocrystals [J]. Mater. Lett., 2015, 148: 22
[28] Chen W Y, Liu Y B, Ma Y, et al. Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) [J]. J. Power Sour., 2015, 273: 1127
[29] Wu D Z, Deng L, Sun Y, et al. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating [J]. RSC Adv., 2017, 7: 24410
[30] Liang X X, Yang F, Yang Y. Research progress in preparation of lithium ion battery separator by electrospinning [J]. Insulat. Mater., 2018, 51(11): 7
[30] 梁幸幸, 杨帆, 杨颖. 静电纺丝制备锂电池隔膜研究进展 [J]. 绝缘材料, 2018, 51(11): 7
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[5] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[6] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[9] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[10] 荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰. 铁离子掺杂TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(11): 862-870.
[11] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[13] 侯静, 杨培志, 郑勤红, 杨雯, 周启航, 李学铭. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703-711.
[14] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[15] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.