Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 176-182    DOI: 10.11901/1005.3093.2019.373
  研究论文 本期目录 | 过刊浏览 |
钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能
王世琦1,霍文燚1,徐正超2,张旭海1,周雪峰1,方峰1()
1. 东南大学材料科学与工程学院 南京 211189
2. 张家港格林台科环保设备有限公司 苏州 215625
Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance
WANG Shiqi1,HUO Wenyi1,XU Zhengchao2,ZHANG Xuhai1,ZHOU Xuefeng1,FANG Feng1()
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2. Zhangjiagang Green Tech Environmental Protection Equipment Co. , LTD. , Suzhou 215625, China
引用本文:

王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.
Shiqi WANG, Wenyi HUO, Zhengchao XU, Xuhai ZHANG, Xuefeng ZHOU, Feng FANG. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. Chinese Journal of Materials Research, 2020, 34(3): 176-182.

全文: PDF(3233 KB)   HTML
摘要: 

用磁控溅射法在ITO玻璃基底上制备Ti-Co合金薄膜,对其阳极氧化处理制备出钴掺杂TiO2纳米管阵列薄膜,研究了钴掺杂对纳米管阵列薄膜的形貌、结构、吸收光谱以及光催化还原性能的影响。结果表明:钴掺杂TiO2纳米管阵列薄膜为锐钛矿相,管状阵列的管径均一、排列规整。钴掺杂使薄膜形成(001)择优取向。随着钴掺杂量的提高,薄膜吸收可见光的能力提高。钴含量(原子分数)为0.19%的薄膜光催化性能最优,可见光照150 min后对Cr(VI)的还原率可达98.4%。

关键词 无机非金属材料磁控溅射阳极氧化光催化还原二氧化钛薄膜    
Abstract

Films of Ti-Co alloy were firstly prepared on ITO glass by magnetron sputtering and then were anodized in electrolyte of ethylene glycol + DI water + NH4F to produce films of the Co-doped TiO2 nanotube arrays. The effect of Co doping on the morphology, microstructure, optical and photocatalytic reduction performance under visible light was assessed for the acquired films. The results show that the films of Co-doped TiO2 nanotube arrays are composed of anatase, the same as the plain TiO2, while the preferred orientation changed to (001) from (101) of the plain TiO2. The incorporation of Co improved the absorption of visible light and promoted the separation of photo-generated electro-hole pairs simultaneously. Compared to the film of plain TiO2, the ones of Co-doped TiO2 nanotube arrays exhibit better photocatalytic reduction performance. The film with 0.19%Co (atomic fraction) shows the best photocatalytic reduction efficiency, it is 98.4% after visible light irradiation for 150 min.

Key wordsinorganic non-metallic materials    magnetron sputtering    anodizing    photocatalytic reduction    titanium dioxide    thin films
收稿日期: 2019-07-29     
ZTFLH:  TB43  
基金资助:江苏省333工程资助项目(BRA2018045);江苏省自然科学基金(BK20180264)
作者简介: 王世琦,男,1995年生,硕士生

Base pressure

/Pa

Sputtering pressure

/Pa

N2 flow rate

/sccm

Sputtering power

/W

Deposition time

/h

8×10-40.5301001
表1  Ti-Co合金薄膜的制备工艺参数
图1  不同钴掺杂量薄膜样品的表面形貌
图2  不同钴掺杂量薄膜样品的XRD图谱
Sample

Co content

/%, atomic fraction

2θ, anatase (004)

/(°)

d-spacing, anatase (004)

/nm

Crystallite size, anatase (004)

/nm

I(004)/I(101)
Co0-TONT037.9670.236832.60.7
Co1-TONT0.1037.8880.237244.838.4
Co2-TONT0.1937.8840.237341.822.7
Co4-TONT0.737.8670.237437.317.1
表2  不同钴掺杂量薄膜样品的成分和结构参数
图3  不同钴掺杂量薄膜样品的拉曼光谱和100~200 cm-1的Eg特征拉曼峰图谱
图4  不同钴含量薄膜的紫外-可见光吸收光谱以及 Co0-TNOT薄膜和Co4-TNOT薄膜的Tauc Plots图谱
图5  不同钴掺杂量薄膜的PL光谱
图6  不同钴含量薄膜的可见光还原Cr(VI)剩余百分数与时间的关系
图7  Co2-TNOT 薄膜的Co 2p X射线光电子能谱图
[1] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37
[2] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Adv. Mater., 2012, 43(10): 229
[3] Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Cheminform, 2007, 107(7): 2891
[4] Wang Y, Feng C, Zhang M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen [J]. Appl. Catal. B-Environ., 2010, 100(1-2): 84
[5] Mor G K, Prakasam H E, Varghese O K, et al. Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis [J]. Nano. Lett., 2007, 7(8): 2356
[6] Ganesh I, Gupta A K, Kumar P P, et al. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications [J]. Mater. Chem. Phys., 2012, 135 (1): 220
[7] Hidalgo M C, Maicu M, Nav?o J A, et al. Effect of Sulfate Pretreatment on Gold-Modified TiO2 for Photocatalytic Applications [J]. J. Phys. Chem. C., 2009, 113 (29): 12840
[8] Pugazhenthiran N, Murugesan S, Anandan S. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium [J]. J. Hazard. Mater., 2013, 263: 541
[9] Yu H, Wang X, Sun H, et al. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film [J]. J. Hazard. Mater., 2010, 184 (1-3): 753
[10] Liu Y, Wang Z, Huang W. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts [J]. Appl. Surf. Sci., 2016, 389: 760
[11] Huang C, Lv Y, Zhou Q, et al. Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group [J]. Ceram. Int., 2014, 40(5): 7093
[12] Ong K G, Varghese O K, Mor G K, et al. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J]. Sol. Energ. Mat. Sol. C., 2007, 91(4): 250
[13] Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano. Lett., 2005, 5 (1): 191
[14] Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water. Res., 2010, 44(10): 2997
[15] Li S, Cai J, Wu X, et al. TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol [J]. J. Hazard. Mater., 2018, 346
[16] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. J. Environ. Manage., 2011, 92(3): 407
[17] Yousefi S M, Shemirani F. Selective and sensitive speciation analysis of Cr (VI) and Cr (III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction [J]. J. Hazard. Mater., 2013, 254-255: 134
[18] Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays [J]. Rsc. Adv., 2014, 4(33): 17300
[19] Sadanandam G, Lalitha K, Kumari V D, et al. Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation [J]. Int. J. Hydrogen Energ., 2013, 38(23): 9655
[20] Janio V, Fernando B, Guaglianoni W C, et al. Cobalt-doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Water Splitting Applications [J]. Appl. Surf. Sci., 2018:S0169433218325091
[21] Chanda A, Rout K, Vasundhara M, et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles [J]. Rsc. Adv., 2018, 8(20): 10939
[22] Pan D, Huang H, Wang X, et al. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors [J]. J. Mater. Chem. A., 2014, 2(29): 11454
[23] Zhao Z, Sun Z, Zhao H, et al. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets [J]. J. Mater. Chem., 2012, 22(41): 21965
[24] Aijo J K, Naduvath J, Mallick S, et al. A novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes [J]. Nanoscale, 2015, 7(48): 20386
[25] Choi H C, Jung Y M, Kim S B. Size effects in the Raman spectra of TiO2 nanoparticles [J]. Vib. Spectrosc., 2005, 37(1): 33
[26] Zhang Y, Farsinezhad S, Wiltshire B D, et al. Optical Anisotropy in Vertically Oriented TiO2 Nanotube Arrays [J]. Nanotechnology, 2017, 28(37)
[27] Zhang W F, He Y L, Zhang M S, et al. Raman Scattering Study on Anatase TiO2 Nanocrystals [J]. J. Phys. D. Appl. Phys., 2000, 33 (8): 912
[28] Yu J, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays [J]. J. Mater. Chem. A., 2015, (44): 22218
[29] Dhanalakshmi J, Iyyapushpam S, Nishanthi S T, et al. Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra [J]. Adv. Nat. Sci-Nanosci., 2017, 8(1): 015015
[30] Li D Z, Zhen Y, Fu X Z. Photoluminescence of nano-TiO2 [J]. Chin. J. Mater. Res., 2000, 14(6): 639
[30] 李旦振; 郑宜; 付贤智. 纳米二氧化钛的光致发光 [J]. 材料研究学报, 2000, 14(6): 639
[31] Ni M, Leung M, Leung D, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renew. Sust. Energ. Rev., 2007, 11(3): 401
[32] Iwasaki M, Hara M, Kawada H, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light [J]. J. Colloid Interface Sci., 2000, 224(1): 202
[33] Yoneyama H, Yamashita&Amp Y, Tamura H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts [J]. Nature, 1979, 282(5741): 817
[34] Alt?n ?lknur, MünevverS?kmen n, ZekeriyaB?y?kl?o?l u. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal [J]. Mat. Sci. Semicon. Proc., 2016, 45: 36
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.