Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 43-49    DOI: 10.11901/1005.3093.2019.401
  研究论文 本期目录 | 过刊浏览 |
共聚物链结构对共聚型含氟聚酰亚胺薄膜性能的影响
张明艳1,2,刘居2,杨振华2,王登辉2,吴子剑1,2()
1. 哈尔滨理工大学 工程电介质及应用技术教育部重点实验室 哈尔滨 150080
2. 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
Effect of Copolymer Chain Structure on Properties of Fluorinated Copolyimide Film
ZHANG Mingyan1,2,LIU Ju2,YANG Zhenhua2,WANG Denghui2,WU Zijian1,2()
1. Harbin University of Science and Technology, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin 150080, China
2. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
引用本文:

张明艳,刘居,杨振华,王登辉,吴子剑. 共聚物链结构对共聚型含氟聚酰亚胺薄膜性能的影响[J]. 材料研究学报, 2020, 34(1): 43-49.
Mingyan ZHANG, Ju LIU, Zhenhua YANG, Denghui WANG, Zijian WU. Effect of Copolymer Chain Structure on Properties of Fluorinated Copolyimide Film[J]. Chinese Journal of Materials Research, 2020, 34(1): 43-49.

全文: PDF(1736 KB)   HTML
摘要: 

以4,4'-二氨基-2,2'-双三氟甲基联苯(TFMB)、4,4'-(六氟异丙烯)二酞酸酐(6FDA)和3,3',4,4'-联苯四甲酸二酐(BPDA)为反应单体,改变非含氟BPDA单体在二酐中的配比和加料方式制备出一系列共聚型含氟聚酰亚胺(PI)薄膜并表征和分析其性能,研究了共聚物链结构对其性能的影响。结果表明,BPDA单体的加料方式及其在二酐单体中的比例均影响薄膜的性能。共聚型含氟PI薄膜在室温下均溶于非质子极性溶剂,且在可见光范围内有较高的透光率。随着非含氟二酐单体BPDA含量的提高薄膜的光学性能略有降低而其热性能和力学拉伸性能提高。非含氟二酐单体占二酐单体的比例为68.97%的共聚型PI薄膜,在500 nm处的透过率达到96.01%;非含氟二酐单体占二酐单体比例为35.71%的共聚型PI薄膜失重10%的热分解温度为595.23℃,拉伸强度为100.98 MPa。同时,BPDA加料方式的改变对共聚型PI薄膜的光学性能、热学性能和力学拉伸性能均有不同程度的影响。

关键词 有机高分子材料含氟PI薄膜透明共聚可溶    
Abstract

4,4'-diamino-2,2'-bistrifluoromethylbiphenyl (TFMB), 4,4'-(hexafluoroisopropene) diacetic anhydride (6FDA) and 3,3',4 4'-biphenyltetracarboxylic dianhydride (BPDA) were used as the reactive monomer, a series of fluorinated copolyimide films were prepared by changing the proportion and feeding method of non -fluorinated monomer BPDA. The properties of the films were characterized and analyzed. The results show that both the feeding method and the proportion of BPDA in the dianhydride monomer can affect the properties of the films. The prepared fluorinated copolyimide films are soluble in the aprotic polar solvent at room temperature, and the film have a high light transmittance in the visible light range. As the content of non-fluorinated dianhydride monomer BPDA increased the optical properties of the film decrease slightly, while the thermal properties and mechanical tensile properties were improved. When the proportion of non-fluorinated dianhydride monomer is 68.97%, the transmittance of the prepared copolyimide film still maintains in 96.01% at 500 nm; When the non-fluorinated dianhydride monomer account for 35.71% of the dianhydride monomer, the thermal decomposition temperature at a weight loss of 10% of the prepared copolyimide film is 595.23℃, correspondingly the tensile strength is 100.98 MPa. The change of feeding mode of BPDA have different effect on the optical properties, mechanical properties and mechanical tensile properties of the copolyimide film.

Key wordsorganic polymer materials    fluorinated PI film    transmittance    copolymerization    soluble
收稿日期: 2019-08-14     
ZTFLH:  TQ324  
基金资助:工程电介质及应用教育部重点实验室2017年前沿项目预研基金(2018EDAQY05);哈尔滨市科技创新人才项目(2017-RAQXJ105);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018214)
作者简介: 张明艳,女,1962年生,教授
图1  共聚型聚酰亚胺的合成路线
NumberDianhydride Monomer Molar RatioBPDA Feeding Frequency
PI-1an(6FDA):n(BPDA) =0.45:11
PI-1bn(6FDA):n(BPDA) =0.45:12
PI-1cn(6FDA):n(BPDA) =0.45:14
PI-2an(6FDA):n(BPDA) =0.90:11
PI-2bn(6FDA):n(BPDA) =0.90:12
PI-2cn(6FDA):n(BPDA) =0.90:14
PI-3an(6FDA):n(BPDA) =1.80:11
PI-3bn(6FDA):n(BPDA) =1.80:12
PI-3cn(6FDA):n(BPDA) =1.80:14
表1  二酐单体的比例
图2  共聚物中可能存在的链结构(A代表TFMB单体、 B代表6FDA单体、C代表BPDA单体)
图3  含氟PI薄膜的红外吸收光谱
图4  含氟PI薄膜的红外吸收光谱
NumberNMPDMAcDMFTHFMeOH
PI-1a+++++-+-
PI-1b++++++-
PI-1c+++++-+-
PI-2a++++++-
PI-3a++++++-
表2  含氟PI薄膜的溶解性能数据
图5  含氟PI薄膜的紫外可见光谱
Numberλcut-off/nmσ450/%σ500/%
PI-1a36291.7796.01
PI-1b36389.4893.62
PI-1c36282.8991.40
PI-2a36393.9396.90
PI-3a36793.5197.30
表3  含氟PI薄膜的光学性能数据
图6  含氟PI薄膜的热失重曲线
NumberTd5%/℃Td10%/℃Rw/%
PI-1a569.87607.7557.92
PI-1b576.37612.8158.82
PI-1c573.12611.4758.11
PI-2a573.89607.2555.33
PI-3a567.37595.2354.65
表4  含氟PI薄膜的热性能
NumberTensile strength/MPaElongation at break/%
PI-1a113.453.13
PI-1b117.612.95
PI-1c114.163.09
PI-2a113.333.22
PI-3a100.983.63
表5  含氟PI薄膜的拉伸性能
[1] Ren X L, Xing L X, Wang L, et al. Industry and product development of polyimide films in Taiwan of China [J]. Insulat. Mater., 2014, 47(4): 17
[1] (任小龙, 邢利欣, 王林等. 中国台湾地区聚酰亚胺薄膜工业及产品发展概况 [J]. 绝缘材料, 2014, 47(4): 17)
[2] Liu J G, Ni H J, Fang G Q, et al. New progress of manufacturing technology for functional polyimide films [J]. Insulat. Mater., 2015, 48(1): 1
[2] (刘金刚, 倪洪江, 房光强等. 特种聚酰亚胺薄膜制备技术新进展 [J]. 绝缘材料, 2015, 48(1): 1)
[3] Yang Y, Park J H, Jung Y, et al. Effect of fluorination on haze reduction in transparent polyimide films for flexible substrates [J]. J. Appl. Polym. Sci., 2017, 134: 44375
[4] Xiao T C, Xiang F, Fan D S, et al. High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films [J]. Polym. Bullet., 2017, 74: 4561
[5] Nam K H, Dowan K, Seo J, et al. Effect of tetrapod ZnO whiskers on the physical and moisture barrier properties of transparent polyimide/TZnO-W composite films [J]. Macromol. Res., 2014, 22: 1243
[6] Kim S K, Wang X Y, Ando S, et al. Highly transparent triethoxysilane-terminated copolyimide and its SiO2 composite with enhanced thermal stability and reduced thermal expansion [J]. Eur. Polym. J., 2015, 64: 206
[7] Kim J C, Chang J H. Quaternary copolyimides with various monomer contents: Thermal property and optical transparency [J]. Macromol. Res., 2014, 22: 1178
[8] Min U, Chang J H. Colorless and transparent polyimide nanocomposite films containing organoclay [J]. J. Nanosci. Nanotechnol., 2011, 11: 6404
[9] Damaceanu M D, Constantin C P, Nicolescu A, et al. Highly transparent and hydrophobic fluorinated polyimide films with ortho-kink structure [J]. European Polymer Journal, 2014, 50: 200
[10] Huang X H, Pei X L, Mei M, et al. Preparation and characterization of soluble fluorinated polyimide films [J]. Polym. Mater. Sci. Eng., 2016, 32(3): 147
[10] (黄孝华, 裴响林, 梅媚等. 可溶性含氟聚酰亚胺薄膜的制备及表征 [J]. 高分子材料科学与工程, 2016, 32(3): 147)
[11] Yu H C, Kumar S V, Lee J H, et al. Preparation of robust, flexible, transparent films from partially aliphatic copolyimides [J]. Macromol. Res., 2015, 23: 566
[12] Ni H J, Liu J G, Wang Z H, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications [J]. J. Ind. Eng. Chem., 2015, 28: 16
[13] Yu H C, Jung J W, Choi J Y, et al. Kinetic study of low‐temperature imidization of poly(amic acid)s and preparation of colorless, transparent polyimide films [J]. J. Polym. Sci., 2016, 54A: 1593
[14] Shen J L, Li F, Cao Z H, et al. Light scattering in nanoparticle doped transparent polyimide substrates [J]. ACS Appl. Mater. Interfaces, 2017, 9: 14990
[15] Tsai C L, Yen H J, Liou G S. Highly transparent polyimide hybrids for optoelectronic applications [J]. React Funct. Polym., 2016, 108: 2
[16] Wang C X, Chen W, Chen Y H, et al. Preparation and properties of polyimide film with high strength and high transparency [J]. Insulat. Mater., 2018, 51(3): 31
[16] (汪聪茜, 陈薇, 陈妤红等. 高强度高透明性聚酰亚胺膜的制备与性能研究 [J]. 绝缘材料, 2018, 51(3): 31)
[17] Su X C, Cao X F, Lu Y H, et al. Synthesis and properties of ODPA/ODA/BAHPP copolyimides containing hydroxyl groups [J]. Insulat. Mater., 2017, 50(4): 1
[17] (苏骁驰, 曹雪峰, 鲁云华等. ODPA/ODA/BAHPP含羟基共聚聚酰亚胺的合成与性能研究 [J]. 绝缘材料, 2017, 50(4): 1)
[18] He S C, Huang J. Synthesis and properties of soluble colorless transparent copolymerized polyimide based on FFDA-PMDA-ODA [J]. Guangzhou Chem. Ind., 2017, 45(1): 36
[18] (何思呈, 黄杰. 可溶性无色透明FFDA-PMDA-ODA共聚聚酰亚胺的合成与性能 [J]. 广州化工, 2017, 45(1): 36)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.