Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 35-42    DOI: 10.11901/1005.3093.2019.326
  研究论文 本期目录 | 过刊浏览 |
航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳
王斌,何燕萍,王昊杰,田勇(),贾涛,王丙兴,王昭东
东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Vacuum Low-pressure Carburization of Gear Steel 16Cr3NiWMoVNbE for Aviation
WANG Bin,HE Yanping,WANG Haojie,TIAN Yong(),JIA Tao,WANG Bingxing,WANG Zhaodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819,China
引用本文:

王斌,何燕萍,王昊杰,田勇,贾涛,王丙兴,王昭东. 航空齿轮钢16Cr3NiWMoVNbE的真空低压渗碳[J]. 材料研究学报, 2020, 34(1): 35-42.
Bin WANG, Yanping HE, Haojie WANG, Yong TIAN, Tao JIA, Bingxing WANG, Zhaodong WANG. Vacuum Low-pressure Carburization of Gear Steel 16Cr3NiWMoVNbE for Aviation[J]. Chinese Journal of Materials Research, 2020, 34(1): 35-42.

全文: PDF(15259 KB)   HTML
摘要: 

对航空齿轮钢16Cr3NiWMoVNbE进行真空低压渗碳热处理,研究了真空渗碳、淬火、冰冷处理以及回火工艺对材料的组织和性能的影响。结果表明:实验钢经渗碳淬火处理后,从表面到心部的组织可分为碳化物区、碳化物与针状马氏体混合区、针状马氏体区和心部板条马氏体区。在碳化物区的晶界有大量的块状Cr碳化物析出,在析出位置Ni元素较少。在针状马氏体和板条马氏体基体中细小的析出物为Nb、V、Mo微合金元素的碳化物。从渗碳钢表面到心部,随着碳浓度的降低硬度曲线呈现先升高后降低的趋势,渗层深度为0.95 mm。冰冷处理使残余奥氏体进一步转化为马氏体,使实验钢的硬度大幅度提高。

关键词 金属材料真空渗碳航空齿轮钢渗层硬度残余奥氏体碳化物    
Abstract

The combined process of vacuum low-pressure carburizing heat treatment for aviation gear steel 16Cr3NiWMoVNbE was investigated, with the emphasis on the effect of carburizing, quenching, cryogenic treatment and tempering process on the microstructure and mechanical properties of the steel. The results show that after carburizing and quenching, the cross sectional microstructure of the steel, can be differentiated as carbide region, mixed region of carbide and acicular martensite, acicular martensite region and lath martensite region from the surface to the center. A large number of blocky Cr carbides precipitated at grain boundaries in the carbide region, where very little Ni can be detected. The fine precipitates in the acicular martensite and the lath martensite matrix are carbides of the microalloying elements Nb, V, and Mo. After the carburization, the carbon concentration of the carburized steel decreases gradually from the surface to the center, correspondingly, the hardness increased first and then decreased, and the depth of carburized layer was 0.95 mm. The subzero treatment at -70oC promotes the transformation of retained austenite to martensite, which greatly improves the overall hardness of the carburized steel.

Key wordsmetallic materials    vacuum carburizing    aviation gear steel    carburized case hardness    retained austenite    carbide
收稿日期: 2019-07-03     
ZTFLH:  TG156.8  
基金资助:国家自然科学基金(51604074);中央高校基本科研业务费专项资金(N170704012);省部共建高品质特殊钢冶金与制备国家重点实验室和上海市钢铁冶金新技术开发应用重点实验室开放课题(SKLASS 2019-02)
作者简介: 王斌,男,1984年生,讲师
CMnSiNiCrWV
0.1920.5970.6981.062.691.020.403
MoNbCeFePSCu
0.4360.1560.00792.40.0100.0020.020
表1  实验钢的化学成分
图1  实验工艺示意图
图2  实验钢的初始显微组织
图3  真空渗碳工艺示意图
图4  真空低压渗碳工艺渗层的组织形貌
图5  16Cr3NiWMoVNbE钢渗碳淬火后显微组织的OM像
图6  渗碳工艺处理后16Cr3NiWMoVNbE钢的SEM照片
图7  各相的摩尔分数
图8  从渗层到基体的元素变化
图9  渗碳后各层析出物的能谱
图10  针状马氏体及其析出物的元素分析
图11  16Cr3NiWMoVNbE钢渗碳淬火后与冰冷处理后的硬度
图12  渗碳后实验钢的高温拉伸曲线
[1] Teng B Q, Chang C J. New material for aeroengine-16Cr3NiWMoVNbE gear steel [J]. Aeroengine, 2003, 29(2): 34
[1] (滕佰秋, 常春江. 航空发动机用新材料-16Cr3NiWMoVNbE齿轮钢 [J]. 航空发动机, 2003, 29(2): 34)
[2] Zhang Z Y. Research and development of aeronautical high performance gear steel [J]. J. Aero. Mater., 2000, 20(3): 148
[2] (赵振业. 航空高性能齿轮钢的研究与发展 [J]. 航空材料学报,2000, 20(3): 148)
[3] Chen N. Improvement of carburizing process of 16Cr3NiWMoVNbE gear [J]. Mechanical Engineer, 2016, (8): 162
[3] (陈娜. 16Cr3NiWMoVNbE齿轮渗碳工艺改进 [J]. 机械工程师,2016, (8): 162)
[4] Wang X D, Xia G F, Tang D F, et al. A Preliminary Analysis on High Performance Aero-engine Accessory Gear and Gear Material [J]. Gas Turbine Experiment and Research, 2001, 14(4): 42
[4] (王旭东, 夏国荣, 唐登发等. 高性能发动机附件传动齿轮及齿轮材料浅析 [J]. 燃气涡轮试验与研究, 2001, 14(4): 42)
[5] Yin L C, Ma X X, Tang G Z, et al. Characterization of carburized 14Cr14Co13Mo4 stainless steel by low pressure carburizing [J]. Surface and Coatings Technology, 2019, 358: 654
[6] Xie C, Zhu G Y, Xun D, et al. Simulation of carburizing quenched microstructure and thermo-physical mechanical properties for 16Cr3NiWMoVNbE steel [J]. Journal of Hunan University of Science & Technology, 2018, 33(1): 78
[6] (谢成, 朱戈阳, 寻丹等. 16Cr3NiWMoVNbE渗碳淬火组织与热物理力学性能的数值模拟 [J]. 湖南科技大学学报, 2018, 33(1): 78)
[7] Yu C H, Zhang S Z, Li Y. Low cycle fatigue behaviors of structural steel 16Cr3NiWMoVNbE at different temperatures [J]. Materials for Mechanical Engineering, 2014, 38(2): 44
[7] (于慧臣, 张仕朝, 李 影. 不同温度下16Cr3NiWMoVNbE结构钢的低周疲劳行为 [J]. 机械工程材料, 2014, 38(2): 44)
[8] Tang W C. Current status of materials for aero-engine gears in china [J]. J. Aero. Mater., 2003, 23(suppl. issue):283
[8] (汤万昌. 我国航空发动机齿轮材料的现状 [J]. 航空材料学报, 2003, 23(增刊): 283)
[9] Zhang W S, Zhou X L, Li H R, et al. Study on carburizing process for new-type 16Cr3NiWMoVNbE gear steel and its properties [J]. Mater. Heat Treat., 2010, 39(24): 216
[9] (张文帅, 周贤良, 李晖榕等. 新型16Cr3NiWMoVNbE齿轮钢渗碳工艺与性能研究 [J]. 材料热处理技术, 2010, 39(24): 216)
[10] Shao S Y. Study on production process and performance of carburized gear steel 16Cr3NiWMoVNbE for Aeroengine [D]. Shenyang: Northeastern University, 2006
[10] (邵淑艳. 航空发动机用渗碳齿轮钢 16Cr3NiWMoVNbE 生产工艺及性能的研究 [D]. 沈阳:东北大学, 2006)
[11] Zhu Z C, Xu W, Wang H. Novel development of carburizing and nitriding technology at home and abroad [J]. Heat Treatment Technology and Equipment, 2013, 35(5): 1
[11] (朱祖昌, 许 雯, 王 洪. 国内外渗碳和渗氮热处理工艺的新进展(二) [J]. 热处理技术与装备, 2013, 35(5): 1)
[12] Gawronski Z, Malasinski A, Sawicki J. Elimination of galvanic copper plating process used in hardening of concentionally carburized gear wheels [J]. Inter. J. Auto. Technol., 2010, 11(1): 127
[13] Sun Z L, Zhang X, Xin Y W, et al. Effect of carburizing method on carburized layer of 18Cr2Ni4A steel gear [J]. Heat Treatment of Metals, 2015, 40(12): 128
[13] (孙振淋, 张 茜. 渗碳方式对18CrNi4A钢齿轮渗层的影响 [J]. 金属热处理, 2015, 40(12): 128)
[14] Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon partition of tempered high carbon high alloy tool steel SDC99 [J]. Chinese Journal of Materials Research, 2016, 30(11): 801
[14] (谢 尘, 周龙梅, 闵 娜等. 深冷处理对高碳高合金工具钢 SDC99 回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801)
[15] Ishida K. Calculation of the effect of alloying elements on the Ms temperature in steels [J]. Journal of Alloys and Compounds, 1995, 220(1-2): 126
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.