Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 29-34    DOI: 10.11901/1005.3093.2019.323
  研究论文 本期目录 | 过刊浏览 |
含缺陷的Al-Si-Mg合金的疲劳性能和强度评估
易科尖1,吴明泽1,张继旺1(),闫军芳2,梅桂明1,朱守东1,苏凯新1
1. 西南交通大学牵引动力国家重点实验室 成都 610031
2. 宝鸡保德利电气设备有限责任公司 宝鸡 721000
Fatigue Properties and Strength Assessment for Al-Si-Mg Alloy via Test Samples with Artificial Defects
YI Kejian1,WU Mingze1,ZHANG Jiwang1(),YAN Junfang2,MEI Guiming1,ZHU Shoudong1,SU Kaixin1
1. State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031, China
2. Bj-baodeli Electrical Equipment Corporation,Baoji 721000, China
引用本文:

易科尖,吴明泽,张继旺,闫军芳,梅桂明,朱守东,苏凯新. 含缺陷的Al-Si-Mg合金的疲劳性能和强度评估[J]. 材料研究学报, 2020, 34(1): 29-34.
Kejian YI, Mingze WU, Jiwang ZHANG, Junfang YAN, Guiming MEI, Shoudong ZHU, Kaixin SU. Fatigue Properties and Strength Assessment for Al-Si-Mg Alloy via Test Samples with Artificial Defects[J]. Chinese Journal of Materials Research, 2020, 34(1): 29-34.

全文: PDF(3743 KB)   HTML
摘要: 

在高速铁路接触网支撑定位装置用Al-7Si-0.6Mg合金中引入不同尺寸的人工缺陷,进行旋转弯曲疲劳实验以定量研究缺陷尺寸对材料疲劳强度的影响,并建立了疲劳强度与缺陷尺寸之间的定量关系。结果表明:材料表面的人工缺陷尺寸越大,试样的高周疲劳强度的下降越大;材料表面尺寸小于370 μm的人工缺陷对其高周疲劳强度没有影响;在适用性条件范围内使用修正的Murakami公式能更加准确地评估Al-7Si-0.6Mg铝合金的高周疲劳强度和应力强度因子门槛范围。

关键词 金属材料Al-7Si-Mg合金人工缺陷疲劳性能修正Murakami公式    
Abstract

Artificial defects of different size were introduced on rotary bending fatigue test samples of Al-7Si-0.6Mg Al-alloy, which is the desired material for the high-speed railway contact net support and positioning device. The influence of defect sizes on the fatigue strength of the alloy was examined via rotating bending fatigue machine, while the quantitative relationship between fatigue strength and defect size was established. The results show that the larger the artificial defect size, the greater the decrease of the high cycle fatigue strength of the sample. The artificial defect size of less than 370 μm has no effect on the high cycle fatigue strength of the alloy; The modified Murakami formula can be applied for more accurate evaluation of the high cycle fatigue strength and stress intensity factor threshold of Al-7Si-0.6Mg Al-alloy within the range of applicability conditions.

Key wordsmetallic materials    Al-7Si-Mg alloy    artificial defect    fatigue performance    modified Murakami formula
收稿日期: 2019-07-02     
ZTFLH:  TU512.4  
基金资助:国家自然科学基金(U1534209)
作者简介: 易科尖,男,1997年生,硕士生
AlloySiMnFeCuNiZnTiMgCrAl
Al-7Si-0.6Mg7.050.00190.151<0.00500.00920.00680.1930.5610.029Bal.
表1  Al-7Si-0.6Mg系铸造合金化学成分(质量分数,%)
图1  旋转弯曲疲劳试样的形状和尺寸
图2  人工缺陷示意图
Serial numberDiameter=Depth(d=h)Top angle(θ)area
1400120°370
2600120°555
3800120°740
41000120°925
表2  人工缺陷尺寸
图3  Al-7Si-Mg试样的S-N曲线

Serial

number

area

/μm

σ5×107

/MPa

Reduction rate

/%

1370800
2555756.25
37407012.5
49256025
表3  人工缺陷试样疲劳强度
图4  不同尺寸钻孔试样的疲劳断口
图5  370 μm钻孔试样的裂纹源对比
图6  光滑试样的裂纹源
Serial numberarea/μmσ5×107/MPa

σ107

/MPa

σw

/MPa

σ5×107/σwσ107/σw
1370808091.60.870.87
2555757585.60.880.88
3740707581.60.860.91
4925607078.60.760.89
表4  Al-7Si-0.6Mg试样Ueno公式预测结果与试验结果对比
图7  含人工缺陷的Al-7Si-Mg合金试样的Kitagawa-Takahashi曲线
Serial number

area

/μm

σ5×107

/MPa

σw/MPaσ5×107/σwError/%
13708079.311.010.86
25557574.131.011.16
37407070.660.990.94
49256068.080.8813.47
表5  含人工缺陷的Al-7Si-0.6Mg试样修正公式预测结果与试验结果对比
Serial numberarea/μmKth/MPa·mKM/MPa·mKU/MPa·m
13703.545.84(64.97%)3.83(8.19%)
25554.076.69(64.37%)4.38(7.62%)
37404.397.36(67.65%)4.82(9.79%)
49254.207.93(88.81%)5.20(23.81%)
表6  含人工缺陷的Al-7Si-0.6Mg试样∆Kth计算结果(括号内为预测误差)
图8  人工缺陷尺寸对∆Kth的影响
Serial numberarea/μm

Kth

/MPa·m

Kth'/MPa·m

Error

/%

13703.543.520.56
25554.074.030.98
37404.394.441.14
49254.204.7813.81
表7  试验计算∆Kth与修正预测公式预测结果对比
[1] Fan Y H, Liu S H, Wang Y, et al. Application of ENAC-AlSi7Mg0.6 aluminium alloy for railway contact network [J]. Hot Working Technology, 2015, (7): 108
[1] (范玉虎, 刘少鸿, 汪 勇等. 铁路网用ENAC-AlSi7Mg0.6铝合金的应用研究 [J]. 热加工工艺, 2015(7): 108)
[2] Qi G F. Thought on increasing reliability of PDL catenary [J]. China Railway, 2005, (09): 29
[2] (戚广枫. 提高客运专线接触网可靠性的思考 [J]. 中国铁路, 2005, (09): 29)
[3] Huo W S. Analysis on the damage and influence of alternating stress on contact net equipment and parts [A]. Selected Works of the Excellent Academic Papers of the 2007 Academic Activities of the Henan Railway Society [C]. 2007, (7): 391
[3] (霍文森. 浅析交变应力对接触网设备、零部件的破坏及影响 [A]. 河南省铁道学会2007年学术活动月优秀论文选集 [C]. 2007, (7): 391)
[4] Liu Y Q, Jie W Q, Wang S N, et al. Investigation of rotating bending gigacycle fatigue properties of Al-7Si-0.3Mg alloys [J]. Chinese Journal of Materials Research, 2012, 26(3): 284
[4] (刘永勤, 介万奇, 王善娜等. Al-7Si-0.3Mg铸造合金的旋转弯曲疲劳性能研究 [J]. 材料研究学报, 2012, 26(3): 284)
[5] Zhu Z Y, He G Q, Ding X Q, et al. Low cycle fatigue behavior of cast aluminum alloy ZL101 under multi-axial loading [J]. The Chinese Journal of Nonferrous Metals, 2007, 17(6): 916
[5] (朱正宇, 何国求, 丁向群等. 多轴载荷下ZL101铝合金的低周疲劳行为 [J]. 中国有色金属学报, 2007, 17(6): 916)
[6] Atxaga G, Pelayo A, Irisarri A M.Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy [J]. Materials Science & Technology, 2013, 17(4): 446
[7] Jiang X S, He G Q, Liu B, et al. Microstructure-based analysis of fatigue behaviour of Al-Si-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 443
[8] Jiang X S, He G Q, Liu B, et al. Fatigue behavior and microstructure evolution of Al-Mg-Si alloy under constant and variable amplitude loadings [J]. Rare Metal Materials & Engineering, 2010, 39(3): 459
[9] Jiang X S, He G Q, Liu B, et al. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(4): 437
[10] Jiang H, Bowen P, Knott J F.Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects [J]. Journal of Materials Science, 1999, 34(4): 719
[11] Lados D A, Apelian D.Fatigue crack growth characteristics in cast Al-Si-Mg alloys:Part I.Effect of processing conditions and microstructure [J]. Materials Science & Engineering A, 2004, 385(1): 200
[12] Lados D A, Apelian D.Fatigue crack growth characteristics in cast Al-Si-Mg alloysPart II.Life predictions using fatigue crack growth data [J]. Materials Science & Engineering A, 2004, 385(1): 187
[13] Wu M Z, Zhang J W, Zhang Y B, et al. Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys [J]. Journal of Materials Engineering and Performance, 2018, 27(11): 5992
[14] Murakami Y, Metal Fatigue:Effects of small defects and nonmetallic inclusions [J]. Materials and Corrosion:2003, 54(3): 198
[15] Ueno A, Nishida M, Miyakawa S, et al.Fatigue limit estimation of aluminum die-casting alloy by means of area method [J]. Journal of the Society of Materials Science, 2014, 63(12): 844
[16] Ueno A, Nishida M, Miyakawa S, et al. ΔKth estimation of aluminum die-casting alloy by means of area method [J]. Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress (APCF/SIF-2014, 2014: 99
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.