Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 371-380    DOI: 10.11901/1005.3093.2017.627
  研究论文 本期目录 | 过刊浏览 |
Mo/Nb/Ta/Ti微合金化310S不锈钢在700℃的第二相析出
吕阳1, 温冬辉1, 王镇华1, 王清1(), 唐睿2, 何欢3
1 大连理工大学三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024
2 中国核动力研究设计院反应堆燃料及材料重点实验室 成都 610213
3 广西有色金属及特色材料加工重点实验室 南宁 530004
Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃
Yang LV1, Donghui WEN1, Zhenhua WANG1, Qing WANG1(), Rui TANG2, Huan HE3
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3 Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Nanning 530004, China
引用本文:

吕阳, 温冬辉, 王镇华, 王清, 唐睿, 何欢. Mo/Nb/Ta/Ti微合金化310S不锈钢在700℃的第二相析出[J]. 材料研究学报, 2018, 32(5): 371-380.
Yang LV, Donghui WEN, Zhenhua WANG, Qing WANG, Rui TANG, Huan HE. Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃[J]. Chinese Journal of Materials Research, 2018, 32(5): 371-380.

全文: PDF(8791 KB)   HTML
摘要: 

高Cr/Ni奥氏体不锈钢在高温下的组织稳定性及第二相析出直接影响合金的力学性能,本文以低碳310S奥氏体不锈钢(Fe-25Cr-22Ni-0.046C, %,质量分数)为基础合金,通过添加多种微量合金化元素(Mo, Nb, Ta, Ti)来研究其对合金第二相析出的影响。采用真空电弧炉熔炼合金锭样品,并在1150℃进行多道次热轧,然后进行1150℃/0.5 h固溶处理(水冷),900℃/0.5 h稳定化处理并随炉冷却,最后在700℃下进行25~408 h时效处理。对不同状态下的样品进行XRD结构分析、金相(OM)、扫描电镜(SEM)和透射电镜(TEM)组织表征以及力学性能测试。实验结果表明,Mo/Nb/Ta/Ti共同微合金化虽然提高了合金的强度,但会使得脆性σ相出现在初期的稳定化阶段,并且在随后的时效过程中,随时效时间延长,σ相含量增加,但是已经析出的Cr23C6也会逐步溶解,从而恶化了合金高温下的力学性能。微量合金化会影响310S合金高温下的第二相析出行为,而影响其组织稳定性。

关键词 金属材料奥氏体不锈钢310S合金微合金化相析出组织稳定性    
Abstract

The microstructural stability and second-phase precipitation of austenitic stainless steels (ASSs) with high Cr and Ni contents at high temperatures affect their mechanical property directly. The effect of minor-addition of Mo, Nb, Ta, and Ti on the second-phase precipitation in a low-carbon 310S stainless steel (Fe-25Cr-22Ni-0.046C, %, mass fraction) has been investigated in the present work. Alloy ingots were prepared by vacuum arc melting, and hot rolled at 1150℃ for multiple passes into sheets. The sheet samples were then heat-treated in sequence: solid-solution at 1150℃ for 0.5 h followed by water cooling, stabilization at 900℃ for 0.5 h followed by furnace cooling, and aging treatment at 700℃ for different times (25~408 h). The steels were characterized by means of XRD, OM, SEM and TEM. Their mechanical property were examined after different treatments. Experimental results show that the co-addition of minor Mo/Nb/Ta/Ti improves the strength of the steels. However, the brittle σ-phase began to appear at the early stage of stabilization process in the Mo/Nb/Ta/Ti-modified steel, while it was not existed in the master steel 310S. During the aging process, the content of σ-phase particles increases with the increase of aging time, and the coarse Cr23C6 particles will be dissolved finally, which will deteriorate the mechanical property of the steels. Both the types and amounts of minor-alloying elements affect the second-phase precipitation, and then the microstructural stability.

Key wordsmetallic materials    austenitic stainless steels    310S alloy    micro-alloying    phase precipitation    microstructural stability
收稿日期: 2017-10-20     
基金资助:资助项目 国际科技合作计划(2015DFR60370), 中央高校基本科研业务费专项资金(DUT16ZD212), 国际热核聚变实验堆计划(2015GB121004), 国家重点研发计划(2017YFB0702400和2017YFB0306100), 广西有色金属及特色材料加工重点实验室开放基金(GXKFJ16-11)
作者简介:

作者简介 吕 阳,女,1994年生,硕士生

Fe Ni Cr Mo C Nb Ti Ta Mn Si
310S 51.517 22.420 24.827 0.000 0.046 0.000 0.000 0.000 0.787 0.402
M-310S 50.362 22.287 24.680 1.093 0.046 0.088 0.091 0.172 0.782 0.400
表1  合金化学成分(%, 质量分数)
图1  310S和M-310S合金样品固溶和700 ℃时效408 h的XRD谱
图2  M-310S合金固溶处理后的显微组织
图3  310S和M-310S合金经过900℃/0.5 h稳定化处理后显微组织的OM(a, c)和SEM(b, d)像
图5  M-310S合金在700℃时效不同时间后显微组织的OM和SEM像
图4  310S在700℃时效不同时间后显微组织的OM和SEM像
No. 25 h-aging 200 h-aging 408 h-aging
Cr23C6 σ f Cr23C6 σ f Cr23C6 σ f
/μm /μm /% /μm /μm /% /μm /μm /%
310S 0.5~2 0.33 0.5~2 0.92 0.5 ~2 1~2.5 1.99
M-310S 0.5~2 0.5~2.5 1.38 0.5~4 2.37 0.5~4 4.49
表2  310S和M-310S在不同时间时效阶段析出粒子的类型、尺寸和体积分数(f)
图6  时效408 h的M-310S合金中析出相的TEM明场像和选区电子衍射花样
图7  稳定化处理后两种合金的室温工程拉伸应力-应变曲线
图8  310S和M-310S合金在700℃时效下的显微硬度HV(稳定化状态的硬度记作时效0 h)
[1] Zhang L F, Zhu F W, Tang R.Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor[J]. Front. Energy Power Eng. China, 2009, 3: 233
[2] Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371: 176
[3] Qian J, Chen C F, Yu H B, et al.The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel[J]. Corros. Sci., 2016, 111: 352
[4] Jiao Y, Zheng W, Guzonas D A, et al.Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water[J]. J. Nucl. Mater., 2015, 464: 356
[5] Baindur S.Materials challenges for the supercritical water-cooled reactor (SCWR)[J]. Bull. Can. Nucl. Soc., 2008, 29: 32
[6] Larsen K R.Alumina-forming austenitic alloys resist high-temperature corrosion[J]. Mater. Perform., 2015, 54(9): 30
[7] Zinkle S J, Was G S.Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
[8] Xu S, Amirkhiz B S.Mechanical properties of fuel cladding candidate alloys for Canadian SCWR concept[J]. JOM, 2016, 68: 469
[9] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
[10] Zhang Q, Tang R, Yin K J, et al.Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corros. Sci., 2009, 51: 2092
[11] Luo X, Tang R, Long C S, et al.Corrosion behavior of austenitic and ferritic steels in supercritical water[J]. Nucl. Eng. Technol., 2008, 40: 147
[12] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, 65R: 39
[13] Lai J K, Wickens A.Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J]. Acta Metall., 1979, 27: 217
[14] Jiao Y N, Zheng W Y, Guzonas D, et al.Microstructure instability of candidate fuel cladding alloys: corrosion and stress corrosion cracking implications[J]. JOM, 2016, 68: 485
[15] Kaneko K, Fukunaga T, Yamada K, et al.Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel[J]. Scr. Mater., 2011, 65: 509
[16] Li T J, Liu F G, Fan C X, et al.Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J]. Hot Working Technol., 2010, 39(14): 43(李太江, 刘福广, 范长信等. 超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J]. 热加工工艺, 2010, 39(14): 43)
[17] Yang F, Zhang Y L, Ren Y N, et al.New Heat Resistant Steel Welding [M]. Beijing: China Electric Power Press, 2006(杨富, 章应霖, 任永宁等. 新型耐热钢焊接 [M]. 北京: 中国电力出版社, 2006)
[18] Iseda A, Okada H, Semba H, et al.Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Mater. Mater. Sci. Eng. Energy Syst., 2007, 2: 199
[19] Sun H Y, Sun Y D, Zhang R Q, et al.Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps[J]. Mater. Des., 2015, 67: 165
[20] Pardo A, Merino M C, Coy A E, et al.Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels[J]. Acta Mater., 2007, 55: 2239
[21] Sourmail T, Bhadeshia H K D H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K[J]. Metall. Mater. Trans., 2005, 36A: 23
[22] Chen W Y, Li M M, Zhang X, et al.In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel[J]. J. Nucl. Mater., 2015, 464: 185
[23] Sun H Y, Sun Y D, Zhang R Q, et al.Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel[J]. Mater. Des., 2014, 64: 374
[24] Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34
[25] Fang Y Y, Zhao J, Li X N.Precipitates in HR3C steel aged at high temperature[J]. Acta Metall. Sin., 2010, 46: 844(方园园, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46: 844)
[26] Schwind M, K?llqvist J, Nilsson J O, et al.s-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater., 2000, 48: 2473
[27] Core?o-Alonso O, Duffus-Scott A, Zánchez-Cornejo C, et al.On the effect of σ-phase formation during metal dusting[J]. Mater. Chem. Phys., 2004, 84: 20
[28] Wang W F, Wu M J.Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Mater. Sci. Eng., 2006, 425A: 167
[29] Sasikala G, Ray S K, Mannan S L.Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal[J]. Mater. Sci. Eng., 2003, 359A: 86
[30] Yamamoto Y, Brady M P, Lu Z P, et al.Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316: 433
[31] Nikulin I, Kipelova A, Kaibyshev R.Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel[J]. Mater. Sci. Eng., 2012, 554A: 61
[32] Zucato I, Moreira M C, Machado I F, et al.Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850℃[J]. Mat. Res., 2002, 5: 385
[33] Haro S, Ram??rez C, Mendoza E, et al. Microstructural analysis of heat-resistant welded pipes[J]. Mater. Charact., 2003, 51: 21
[34] Vach M, Kuníková T, Dománková M, et al.Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800℃[J]. Mater. Charact., 2008, 59: 1792
[35] Padilha A F, Escriba D M, Materna-Morris E, et al.Precipitation in AISI 316L(N) during creep tests at 550 and 600℃ up to 10 years[J]. J. Nucl. Mater., 2007, 362: 132
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.