|
|
Mo/Nb/Ta/Ti微合金化310S不锈钢在700℃的第二相析出 |
吕阳1, 温冬辉1, 王镇华1, 王清1( ), 唐睿2, 何欢3 |
1 大连理工大学三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024 2 中国核动力研究设计院反应堆燃料及材料重点实验室 成都 610213 3 广西有色金属及特色材料加工重点实验室 南宁 530004 |
|
Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃ |
Yang LV1, Donghui WEN1, Zhenhua WANG1, Qing WANG1( ), Rui TANG2, Huan HE3 |
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China 3 Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Nanning 530004, China |
引用本文:
吕阳, 温冬辉, 王镇华, 王清, 唐睿, 何欢. Mo/Nb/Ta/Ti微合金化310S不锈钢在700℃的第二相析出[J]. 材料研究学报, 2018, 32(5): 371-380.
Yang LV,
Donghui WEN,
Zhenhua WANG,
Qing WANG,
Rui TANG,
Huan HE.
Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃[J]. Chinese Journal of Materials Research, 2018, 32(5): 371-380.
[1] | Zhang L F, Zhu F W, Tang R.Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor[J]. Front. Energy Power Eng. China, 2009, 3: 233 | [2] | Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371: 176 | [3] | Qian J, Chen C F, Yu H B, et al.The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel[J]. Corros. Sci., 2016, 111: 352 | [4] | Jiao Y, Zheng W, Guzonas D A, et al.Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water[J]. J. Nucl. Mater., 2015, 464: 356 | [5] | Baindur S.Materials challenges for the supercritical water-cooled reactor (SCWR)[J]. Bull. Can. Nucl. Soc., 2008, 29: 32 | [6] | Larsen K R.Alumina-forming austenitic alloys resist high-temperature corrosion[J]. Mater. Perform., 2015, 54(9): 30 | [7] | Zinkle S J, Was G S.Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735 | [8] | Xu S, Amirkhiz B S.Mechanical properties of fuel cladding candidate alloys for Canadian SCWR concept[J]. JOM, 2016, 68: 469 | [9] | Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943 | [10] | Zhang Q, Tang R, Yin K J, et al.Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corros. Sci., 2009, 51: 2092 | [11] | Luo X, Tang R, Long C S, et al.Corrosion behavior of austenitic and ferritic steels in supercritical water[J]. Nucl. Eng. Technol., 2008, 40: 147 | [12] | Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, 65R: 39 | [13] | Lai J K, Wickens A.Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J]. Acta Metall., 1979, 27: 217 | [14] | Jiao Y N, Zheng W Y, Guzonas D, et al.Microstructure instability of candidate fuel cladding alloys: corrosion and stress corrosion cracking implications[J]. JOM, 2016, 68: 485 | [15] | Kaneko K, Fukunaga T, Yamada K, et al.Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel[J]. Scr. Mater., 2011, 65: 509 | [16] | Li T J, Liu F G, Fan C X, et al.Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J]. Hot Working Technol., 2010, 39(14): 43(李太江, 刘福广, 范长信等. 超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J]. 热加工工艺, 2010, 39(14): 43) | [17] | Yang F, Zhang Y L, Ren Y N, et al.New Heat Resistant Steel Welding [M]. Beijing: China Electric Power Press, 2006(杨富, 章应霖, 任永宁等. 新型耐热钢焊接 [M]. 北京: 中国电力出版社, 2006) | [18] | Iseda A, Okada H, Semba H, et al.Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Mater. Mater. Sci. Eng. Energy Syst., 2007, 2: 199 | [19] | Sun H Y, Sun Y D, Zhang R Q, et al.Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps[J]. Mater. Des., 2015, 67: 165 | [20] | Pardo A, Merino M C, Coy A E, et al.Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels[J]. Acta Mater., 2007, 55: 2239 | [21] | Sourmail T, Bhadeshia H K D H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K[J]. Metall. Mater. Trans., 2005, 36A: 23 | [22] | Chen W Y, Li M M, Zhang X, et al.In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel[J]. J. Nucl. Mater., 2015, 464: 185 | [23] | Sun H Y, Sun Y D, Zhang R Q, et al.Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel[J]. Mater. Des., 2014, 64: 374 | [24] | Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34 | [25] | Fang Y Y, Zhao J, Li X N.Precipitates in HR3C steel aged at high temperature[J]. Acta Metall. Sin., 2010, 46: 844(方园园, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46: 844) | [26] | Schwind M, K?llqvist J, Nilsson J O, et al.s-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater., 2000, 48: 2473 | [27] | Core?o-Alonso O, Duffus-Scott A, Zánchez-Cornejo C, et al.On the effect of σ-phase formation during metal dusting[J]. Mater. Chem. Phys., 2004, 84: 20 | [28] | Wang W F, Wu M J.Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Mater. Sci. Eng., 2006, 425A: 167 | [29] | Sasikala G, Ray S K, Mannan S L.Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal[J]. Mater. Sci. Eng., 2003, 359A: 86 | [30] | Yamamoto Y, Brady M P, Lu Z P, et al.Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316: 433 | [31] | Nikulin I, Kipelova A, Kaibyshev R.Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel[J]. Mater. Sci. Eng., 2012, 554A: 61 | [32] | Zucato I, Moreira M C, Machado I F, et al.Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850℃[J]. Mat. Res., 2002, 5: 385 | [33] | Haro S, Ram??rez C, Mendoza E, et al. Microstructural analysis of heat-resistant welded pipes[J]. Mater. Charact., 2003, 51: 21 | [34] | Vach M, Kuníková T, Dománková M, et al.Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800℃[J]. Mater. Charact., 2008, 59: 1792 | [35] | Padilha A F, Escriba D M, Materna-Morris E, et al.Precipitation in AISI 316L(N) during creep tests at 550 and 600℃ up to 10 years[J]. J. Nucl. Mater., 2007, 362: 132 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|