Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 635-640    DOI: 10.11901/1005.3093.2016.223
  研究论文 本期目录 | 过刊浏览 |
浸渍热解对常压烧结SiC/h-BN陶瓷力学性能的影响
杨万利1,2(), 代丽娜1, 史忠旗2, 肖志超1, 张旭辉1
1 西安航天复合材料研究所 超码科技有限公司 西安 710025
2 西安交通大学材料科学与工程学院 金属材料强度国家重点实验室 西安 710049
Effect of Infiltration- and Pyrolyzation-Treatment on Mechanical Properties of Pressureless Sintered SiC/h-BN Ceramics
Wanli YANG1,2(), Lina DAI1, Zhongqi SHI2, Zhichao XIAO1, Xuhui ZHANG1
1 Chaoma Technology Co. Ltd, Xi’an Aerospace Composites Research Institute, Xi'an 710025, China
2 State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
引用本文:

杨万利, 代丽娜, 史忠旗, 肖志超, 张旭辉. 浸渍热解对常压烧结SiC/h-BN陶瓷力学性能的影响[J]. 材料研究学报, 2017, 31(8): 635-640.
Wanli YANG, Lina DAI, Zhongqi SHI, Zhichao XIAO, Xuhui ZHANG. Effect of Infiltration- and Pyrolyzation-Treatment on Mechanical Properties of Pressureless Sintered SiC/h-BN Ceramics[J]. Chinese Journal of Materials Research, 2017, 31(8): 635-640.

全文: PDF(3374 KB)   HTML
摘要: 

采用常压烧结工艺在1700℃保温2 h制备了SiC/h-BN复相陶瓷,在真空条件下使用硅溶胶和酚醛树脂溶液对烧结后试样进行交替循环浸渍,并在1450℃保温1 h进行热解处理,对比研究了浸渍热解处理前后复相陶瓷的致密度、抗弯强度和Vickers硬度的变化,并讨论了复相陶瓷的强化机制。结果表明: SiC/h-BN陶瓷的致密度和力学性能在浸渍热处理后均得到显著的改善,其中SiC/20wt.%h-BN的相对密度从69.7%提高到74.9%,而抗弯强度提高了约1.5倍。浸渍热处理后形成了细小纳米态的SiC颗粒,相互交联沉积在孔隙界面,使裂纹沿界面扩展的阻力显著增加,从而提高了复合材料的力学性能。

关键词 无机非金属材料碳化硅/六方氮化硼陶瓷浸渍热解处理强化硅溶胶酚醛树脂    
Abstract

Composites of SiC/h-BN ceramic were fabricated by pressureless sintering at 1700oC for 2 h. The sintered samples were alternately infiltrated with solutions of silica sol and phenolic in vacuum, and then pyrolyzed at 1450oC for 1 h. The density, flexural strength and Vickers hardness of SiC/h-BN composites before and after infiltration- and pyrolyzation-treatment were investigated, and the strengthening mechanism of the composites was analyzed. The results show that the relative density and mechanical properties of SiC/h-BN composites were improved significantly after infiltration- and pyrolyzation-treatment, as an example, the relative density of increased from 69.7% to 74.9%, and the flexural strength increased near 1.5 times for the composite SiC/20 mass% h-BN; XRD patterns and microstructure of the prepared composite revealed that the SiC particles formed during the pyrolyzation-treatment were nano-sized, which precipitated on the inner wall of pores of the sintered composite SiC/h-BN, Therewith, of which the resistance to crack propagation along grain boundaries was obviously increased, i.e., the mechanical properties of SiC/h-BN composite were improved.

Key wordsinorganic non-metallic materials    SiC/h-BN ceramic    infiltration and pyrolysis treatment    strengthening    silica sol    phenolic
收稿日期: 2016-04-22     
ZTFLH:  TQ174  
基金资助:国家高技术研究发展计划(2012AA040209)
作者简介:

作者简介 杨万利,男,1982年生,博士

图1  SiC/h-BN复相陶瓷的质量增加率与浸渍次数的关系
图2  SiC/h-BN复相陶瓷浸渍热解前后相对密度和开气孔率的变化
图3  SiC/h-BN复相陶瓷浸渍热解前后抗弯强度的变化
Samples state SB0 SB10 SB30
Before heat-treated HV/MPa 595 350 130
After heat-treated HV/MPa 1190 625 285
表1  SiC/h-BN 复相陶瓷浸渍热解前后的维氏硬度
图4  SB20原始粉料、烧结后及浸渍热解处理后试样的XRD谱
图5  SB0和SB20试样在烧结和浸渍热处理后的断口SEM照片
图6  SiC/h-BN复相陶瓷浸渍热处理的强化模型
[1] Takeda Y.Development of high thermal conductive SiC ceramics[J]. Am. Ceram. Soc. Bull, 1961, 67(12): 1988
[2] Padture N P, Evans C J, Xu H H K, et al. Enhanced machinability of silicon carbide via microstructural design[J]. J. Am. Ceram. Soc., 1995, 78(1): 215
[3] YANG W L,SHI Z Q,JIN Z H,et al.Preparation and property of immersion heater with SiC composite ceramic sheath[J]. J. Chin. Ceram. Soc., 2012, 40(3): 362(杨万利, 史忠旗, 金志浩等. SiC 复相陶瓷内加热器套管的制备及性能[J]. 硅酸盐学报, 2012, 40(3): 362)
[4] Kishan R N, Mulay V, Jaleel M.Corrosion behavior of infiltrated reaction sintered silicon carbide[J]. J. Mater. Sci. Lett., 1994, 13(20): 1516
[5] Grossman D G.Machinable glass-ceramics based on tetrasilicic mica[J]. J. Am. Ceram. Soc., 1972, 55(9): 446
[6] Wang H, Guo Q, Yang J, et al.Microstructure and thermophysical properties of B4C/graphite composites containing substitutional boron[J]. Carbon, 2013, 52: 10
[7] Liu H, Hsu S M.Fracture behavior of multilayer silicon nitride/boron nitride ceramics[J]. J. Am. Ceram. Soc., 1996, 79(9): 2452
[8] Zhang G, Ohji T.In situ reaction synthesis of silicon carbide-boron nitride composites[J]. J. Am. Ceram. Soc., 2001, 84(7): 1475
[9] Du A, Pan W, Ahmad K, et al.Enhanced mechanical properties of machinable LaPO4-Al2O3 composites by spark plasma sintering[J]. Inter. J. App. Ceram. Technol., 2009, 6(2): 236
[10] Li H, Zhang Y, Han J, et al.Microstructure, mechanical properties and thermal shock behavior of h-BN-AlN ceramic composites prepared by combustion synthesis[J]. J. Alloy Compd., 2011, 509(5): 1661
[11] Yang W, Shi Z, Jin Z, et al.Effects of impregnating and heat treatment on the oxidation and thermal shock properties of pressureless sintered SiC/graphite composites[J]. Mater. Sci. Forum, 2012, 724: 311
[12] Wang X, Qiao G, Jin Z.Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites[J]. J. Am. Ceram. Soc., 2004, 87(4): 565
[13] Yang Z, Jia D, Zhou Y, et al.Thermal shock resistance of in situ formed SiC-BN composites[J]. Mater. Chem. Phys., 2008, 107: 476
[14] Li H W, Jin H Y, Zhang Q, et al.SiC/C machinable ceramics surface hardening by silicon infiltration[J]. Scripta Materialia, 2010, 63(12): 1177
[15] Shi Z Q, Wang J P, Qiao G J, et al.Effects of weak boundary phases (WBP) on the microstructure and mechanical properties of pressureless sintered Al2O3/h-BN machinable composites[J]. Mater. Sci. Eng. A, 2008, 492(1-2): 29
[16] Evans A G, Marshall D B.Wear mechanisms in ceramics in: Fundamentals of friction and wear of materials [M]. New York: American in Press of Society of Mechanical Engineering, 1981
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.