Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 627-634    DOI: 10.11901/1005.3093.2016.623
  研究论文 本期目录 | 过刊浏览 |
再生纤维素/SnS2复合材料的微波辅助水热法制备及性能
朱墨书棋1, 林春香1(), 刘以凡1, 苏巧权1, 刘明华1,2
1 福州大学环境与资源学院 福州 350000
2 福州大学能源与环境光催化国家重点实验室 福州 350000
Preparation of Composite of SnS2/regenerated Cellulose by Microwave-assisted Synthesis and its Properties
Moshuqi ZHU1, Chunxiang LIN1(), Yifan LIU1, Qiaoquan SU1, Minghua LIU1,2
1 College of Environment and Resources, Fuzhou University, Fuzhou 350000, China
2 State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350000, China
引用本文:

朱墨书棋, 林春香, 刘以凡, 苏巧权, 刘明华. 再生纤维素/SnS2复合材料的微波辅助水热法制备及性能[J]. 材料研究学报, 2017, 31(8): 627-634.
Moshuqi ZHU, Chunxiang LIN, Yifan LIU, Qiaoquan SU, Minghua LIU. Preparation of Composite of SnS2/regenerated Cellulose by Microwave-assisted Synthesis and its Properties[J]. Chinese Journal of Materials Research, 2017, 31(8): 627-634.

全文: PDF(4526 KB)   HTML
摘要: 

分别以四氯化锡、硫代乙酰胺和再生纤维素为锡源、硫源和载体,用微波辅助加热方法在120℃制备再生纤维素/SnS2可见光催化复合材料,使用XRD、SEM、TEM、DRS和BET等手段对其结构及性能进行了表征。结果表明,所制备的SnS2为六方相,复合材料呈纳米薄片层状结构,晶面间距约为0.52 nm;与未负载的SnS2相比,复合材料具有较大的可见光吸收区域及较大比表面积;用微波加热方法可降低SnS2的合成时间和温度,在微波辐射温度为120℃、辐射时间为20~80 min的条件下制备出的再生纤维素/SnS2复合材料在可见光照射下对20 mg/L罗丹明B的3 h内去除率可达100%,重复使用5次后对罗丹明B的可见光降解率仍可达88%。

关键词 复合材料微波辅助SnS2再生纤维素可见光催化    
Abstract

A visible-light catalytic composite material of regenerated cellulose supported SnS2 (SnS2/regenerated cellulose) was synthesized via microwave-assisted heating method at 120℃ with SnCl4 and thioacetamide as the source of Sn and S respectively. The obtained SnS2/regenerated cellulose was characterized by power X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and specific surface areas (BET). The results show that the prepared SnS2 is a phase with hexagonal crystal structure and the composite exhibited a nano-sized lamellar structure with 0.52 nm of interlayer spacing. In comparison with the simple SnS2, the composite SnS2/regenerated cellulose has larger absorption band for visible light and specific surface area. Furthermore, the microwave heating method can greatly reduce the synthesis temperature and the reaction time. The composite prepared at 120℃ for 20~80 min exhibited excellent photocatalytic performance. The removal efficiency for Rhodamine B (20 mg/L) can reach 100% within 3 h by the composite under visible light irradiation, and the degradation ratio of RhB can still reach 88% by the composite even after five cycles of use/regeneration.

Key wordscomposite    microwave-assited    SnS2    regenerated cellulose    visible-light photocatalysis
收稿日期: 2016-10-24     
ZTFLH:  TB322  
基金资助:国家自然科学基金(2015J01049);福建省自然科学基金(2015J01049);福州大学能源与环境光催化国家重点实验室自主课题基金(2014C02), 福建省教育厅科技项目(JZ160416)
作者简介:

作者简介 朱墨书棋,女,1991年生,硕士生

图1  再生纤维素/SnS2复合材料、未负载的SnS2以及再生纤维素的XRD图谱
图2  未负载SnS2(a),再生纤维素/SnS2复合材料的电镜扫描图(b, c)及复合材料的EDS图谱(d)
图3  未负载SnS2的TEM图(a)及(a)中白色方框区域放大图(b);复合材料的TEM图(c)及(c)中白色方框区域放大图(d);(e)为复合材料的HRTEM图
图4  复合材料(a)和未负载SnS2(b)的紫外-可见漫反射谱图
图5  未负载SnS2(a)和复合材料(b)在可见光下的光电流响应曲线
图6  复合材料、未负载SnS2以及N2吸附-脱附曲线图;插图为孔径分布图
图7  不同温度影响下再生纤维素/SnS2复合光催化材料的光催化降解图(a)和XRD图(b)
图8  不同时间影响下再生纤维素/SnS2复合光催化材料的光催化降解图(a)和XRD图(b)
图9  不同纤维素添加量下再生纤维素/SnS2复合光催化材料的光催化降解图(a)和XRD图(b)
图10  未负载SnS2、纤维素和复合材料可见灯下的光催化材料的光催化降解性能
图11  复合材料回收使用次数对罗丹明B光催化脱色效率的影响
[1] Rey A, Garcia-Munoz P, Hernandez-Alonso M D, et al. WO3-TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent[J]. Applied Catalysis B-Environmental, 2014, 154: 274
[2] Kuwahara Y, Maki K, Matsumura Y, et al.Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO2 photocatalyst[J]. Journal of Physical Chemistry C.2009, 113(4): 1552
[3] Rehman S, Ullah R, Butt A M, et al.Strategies of making TiO2 and ZnO visible light active[J]. Journal of Hazardous Materials. 2009,170(2): 560
[4] Wu Q, Zhao J, Qin G, et al.Photocatalytic reduction of Cr(VI) with TiO2 film under visible light[J]. Applied Chatalysis B-Environmental, 2013, 142: 142
[5] Deshpande N G, Sagade A A, Gudage Y G, et al.Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique[J]. Journal of Alloys and Compounds, 2007, 436(1): 421
[6] Xiao H, Zhang Y C, Bai H.Molten salt synthesis of SnS2 microplate particles[J]. Materials Letters, 2009, 63(9): 809
[7] Lei Y, Song S, Fan W, et al.Facile Synthesis and assemblies of flowerlike SnS2 and In3+-Doped SnS2: hierarchical structures and their enhanced photocatalytic property[J]. Journal of Physical Chemistry C, 2009, 113(4): 1280
[8] Takeda N, Parkinson B A.Adsorption morphology, light absorption, and Sensitization yields for squaraine dyes on SnS2 surfaces[J].Journal of The American Chemical Society, 2003, 125(18): 5559
[9] Zhang Y C, Du Z N, Li S Y, et al.Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2 center dot 2H2O and S powders[J]. Applied Catalysis B-Environmental, 2010, 95(1): 153
[10] Zhang Y C, Du Z N, Li K W, et al.Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange[J]. Separation and Purification Technology, 2011, 81(1): 101
[11] Peng J, Xu Y, Wu H, et al.Self-assembly of SnS2 submicron-sized flakes to form microspheres under template-free hydrothermal conditions[J]. Journal of Alloys and Compounds, 2010, 490(1): 20
[12] Hu H M, Deng C H, Sun M, et al.Solvothermal synthesis of 3D rosa-like SnS2 microcrystals[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(9): 1612(胡寒梅, 邓崇海, 孙梅, 等. 溶剂热合成三维蔷薇花状SnS2微晶[J]. 无机化学学报, 2009, 25(9): 1612)
[13] Duan T L, Li X L.Slected-control synthesis of SnS2 nanocrystalline in different solvents[J]. Sciences & Technology Information, 2008, 31: 297(段体兰, 李学良. 不同形貌纳米SnS2的溶剂热法合成及表征[J].科技信息, 2008, 31: 297)
[14] Zhu Y, Chen Y, Liu L.Effect of ethylene glycol on the growth of hexagonal SnS2 nanoplates and their optical properties[J]. Journal of Crystal Growth, 2011, 328(1): 70
[15] Liu S, Yin X, Hao Q, et al.Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery[J]. Materials Letters. 2010, 64(21): 2350
[16] Tang H, Yu J, Zhao X.Solvothermal synthesis of novel dendrite-like SnS particles in a mixed solvent of ethylenediamine and dodecanethiol[J]. Journal of Alloys and Compounds, 2008, 460(1): 513
[17] Si W, Huang M Y, Ding S Q, et al.Research progress in microwave assisted synthesis of inorganic nanomaterials[J]. Bulletin of The Chinese Ceramic Society, 2013, 5: 868(司伟, 黄妙言, 丁思齐, 等. 微波法辅助合成无机纳米材料的研究进展[J]. 硅酸盐通报, 2013, 5: 868)
[18] Komarneni S.Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods[J]. CURRENT SCIENCE, 2003, 85(12): 1730
[19] Liu H, Su Y, Chen P, et al.Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 285
[20] Park S, Park J, Selvaraj R, et al.Facile microwave-assisted synthesis of SnS2 nanoparticles for visible-light responsive photocatalyst[J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 269
[21] Yang C, Wang W, Shan Z, et al.Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2[J]. Journal of Solid State Chemistry, 2009, 182(4): 807
[22] Makama A B, Salmiaton A, Saion E B, et al.Microwave-assisted synthesis of porous ZnO/SnS2 heterojunction and its enhanced photoactivity for water purification[J]. Journal of Nanomaterials, 2015, 2015: 1
[23] Zhu W B.Preparation and electrochemical performance of SnS2, SnO2 hierarchical flower-like microspher[D]. Master's Dissertation. Hefei University of Technology, 2014(朱文斌. SnS2、SnO2多级花状微球制备与电化学性能研究[D]. 硕士学位论文, 合肥工业大学, 2014)
[24] Seo J, Jang J, Park S, et al.Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries[J]. Advanced Materials, 2008, 20(22): 4269
[25] Zhang J, Yu J, Jaroniec M, et al.Noble Metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H-2-production performance[J]. Nano Letters, 2012, 12(9): 4584
[26] Lim J, Murugan P, Lakshminarasimhan N, et al.Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light[J]. Journal of Catalysis, 2014, 310(SI): 91
[27] Bu Y, Chen Z, Li W, et al.Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12361
[28] Wang Y, Shi J, Cao J, et al.Synthesis of Co3O4 nanoparticles via the CTAB-assisted method[J]. Materials Letters. 2011, 65(2): 222
[29] Yuan X, Wang H, Wu Y, et al.A novel SnS2-MgFe2O4/reduced graphene oxide flower-like photocatalyst: Solvothermal synthesis, characterization and improved visible-light photocatalytic activity[J]. Catalysis Communications, 2015, 61: 62
[30] Lucena R, Fresno F, Conesa J C.Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: Spectral response and stability[J]. Applied Catalysis A: General. 2012, 415: 111
[31] Yan T, Li L, Li G, et al.Porous SnIn4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation[J]. Journal of Hazardous Materials, 2011, 186(1): 272
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.