Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 261-266    DOI: 10.11901/1005.3093.2016.329
  研究论文 本期目录 | 过刊浏览 |
旋转摩擦焊接头焊合机理研究
吕元召1,2, 李京龙2(), 李鹏2, 孙涛1, 熊江涛1, 张赋升2
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 西北工业大学 摩擦焊接陕西省重点实验室 西安 710072
Joint Formation Mechanism of Rotary Friction Welding Characterized by Seaming Ratio
Yuanzhao LV1,2, Jinglong LI2(), Peng LI2, Tao SUN1, Jiangtao XIONG1, Fusheng ZHANG2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Shaanxi Key Laboratory of Friction Welding Technologies,Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

吕元召, 李京龙, 李鹏, 孙涛, 熊江涛, 张赋升. 旋转摩擦焊接头焊合机理研究[J]. 材料研究学报, 2017, 31(4): 261-266.
Yuanzhao LV, Jinglong LI, Peng LI, Tao SUN, Jiangtao XIONG, Fusheng ZHANG. Joint Formation Mechanism of Rotary Friction Welding Characterized by Seaming Ratio[J]. Chinese Journal of Materials Research, 2017, 31(4): 261-266.

全文: PDF(2802 KB)   HTML
摘要: 

以Q235低碳钢为母材,研究了摩擦时间和顶锻压力对旋转摩擦焊接头焊合率和冶金质量的影响规律并分析了接头焊合机理。结果表明,不同焊接参数下已焊合区域的拉伸强度基本相同且均大于或等于母材强度,焊接参数影响的只是接头焊合率(焊合率:接头横截面焊缝焊合部分长度与总长度之比),因此提出将焊合率作为焊接质量的评价标准。进一步研究表明,在其他参数不变的情况下,焊合率随顶锻压力的增大而增大,但增大速率逐渐趋缓,当顶锻压力达到某临界值后,焊合率达到100%,对所需临界压力进行了分析并得出了其计算方法;随着摩擦时间的增加,轴向缩短量增大,焊合率减小,焊接界面温度升高,高温区变宽,焊后再结晶区域加宽且晶粒尺寸变大。近缝区组织呈流线状,且晶粒大小不均匀。最终得出,大顶锻压力,短摩擦时间有助于提高焊合率,减小晶粒尺寸小,提升接头整体质量。

关键词 金属材料焊合机理旋转摩擦焊焊合率接头质量    
Abstract

Weld joints of low carbon steel Q235 was prepared by rotary friction welding technique, and the effect of friction time and forge pressure on the seaming ratio and metallurgical quality of weld joints was investigated. The results show that the tensile strength of the seaming zones prepared by the rotary friction welding with different welding parameters is greater than or equal to that of the base metal, in other word, the variation of welding parameters will simply affect the seaming ratio (the ratio of the length of seamed portion to the total length of a joint), while the quality of joints is direct determined by the seaming ratio. Further study shows that the seaming ratio increases with the forging pressure, but the increment slows down gradually and eventually reaches 100% when the forging pressure reaches a critical value. The axial shortening amount increases along with friction time, which then decreases the seaming ratio. The width of the weld zone becomes larger and the grain size increases with friction time. The grain size is not uniform near the weld seam with streamline structure presented. It is concluded that large forging pressure and short friction time are helpful to improve the seaming ratio, reduce the grain size and enhance the quality of the joints.

Key wordsmetallic materials    joint formation mechanism    rotary friction welding    seaming ratio    joint quality
收稿日期: 2016-06-13     
ZTFLH:  TG453  
基金资助:国家自然科学基金(51575451, 51475376)
作者简介:

作者简介 吕元召,男,1991年生, 硕士

C Si Mn S P Fe
0.16 0.18 0.44 0.021 0.019 Bal.
表1  Q235钢的化学成分
图1  拉伸试样尺寸示意图
Series Friction pressure
P1/MPa
Friction time
t1/s
Forging pressure
P2/MPa
Forging time
t2/s
1 44 2 44, 88, 132, 220 5.0
2 44 0.5, 1, 2, 4 88 5.0
88 0.3, 1, 2
3 44 2 88 2, 5, 10
表2  焊接工艺参数
图2  不同顶锻压力下飞边形貌
图3  接头焊合率和轴向缩短量随顶锻压力的变化
图4  顶锻阶段接头受力分析示意图
图5  不同摩擦压力焊缝形貌随时间的演变
图6  焊合率、轴向缩短量和飞边宽度随摩擦时间的变化
图7  顶锻阶段塑性金属流动方向示意图
图8  接头温度和微观组织随时间的演变规律
图9  含有未焊合接头断口
图10  拉伸试样断裂前后比较图
[1] Kevin J G.Friction welding takes on new applications[J]. Weld. J., 1997, 76: 39
[2] Spindler D E.What industry needs to know about friction welding[J]. Weld. J., 1994, 72: 37
[3] Liu J.The developments and applications of friction welding in America[J]. Weld. Technol., 1995, 34(4): 46(刘军. 摩擦焊在美国的应用与发展[J]. 焊接技术, 1995, (4): 46)
[4] Sathiya P, Aravindan S, Haq A N.Some experimental investigations on friction welded stainless steel joints[J]. Mater. Des., 2008, 29: 1099
[5] Li P, Li J L, Li X, et al.A study of the mechanisms involved in initial friction process of continuous drive friction welding[J]. J. Adhes. Sci. Technol., 2015, 29: 1246
[6] Kimura M, Inoue H, Kusaka M, et al.Analysis method of friction torque and weld interface temperature during friction process of steel friction welding[J]. J. Solid Mech. Mater.Eng., 2010, 4: 401
[7] Kimura M, Kusaka M, Seo K, et al.Joining phenomena during friction stage of A7075-T6 aluminium alloy friction weld[J]. Sci. Technol. Weld. Join., 2013, 10: 378
[8] Liu Z J, Li W X, Ji S D, et al.3D numerical simulation on temperature field and material flow during continuous driven Friction welded 45 steel[J]. Hot Work. Technol., 2014, 43: 181(刘占军, 李文星, 姬书得等. 连续驱动摩擦焊接45钢过程温度与材料流动的3D数值模拟[J]. 热加工工艺, 2014, 43: 181)
[9] Ji S D, Liu J G, Zhang L G, et al.Effect of material flow on flash formation during continuous driven friction welding[J]. Trans. China Weld. Institut., 2013, 34(4): 31(姬书得, 刘建光, 张利国等. 材料流动对连续驱动摩擦焊飞边形成的影响[J]. 焊接学报, 2013, 34(4): 31)
[10] Yang M E.Design and optimization of the piston rod continuous driven friction welding parameters [D]. Xiangtan: Hunan University of Science and Technology, 2012(杨明鄂. 活塞杆连续驱动摩擦焊接工艺参数的设计与优化[D]. 湘潭: 湖南科技大学, 2012)
[11] Wang Y.Continuous drive friction welding process research of high temperature alloy (GH2132, GH4169)/42CrMo steel [D]. Dalian: Dalian Jiaotong University, 2014(王毅. 高温合金(GH2132、GH4169)/42CrMo钢连续驱动摩擦焊工艺研究 [D]. 大连: 大连交通大学, 2014)
[12] Ates H, Turker M, Kurt A.Effect of friction pressure on the properties of friction welded MA956 iron-based superalloy[J]. Mater. Des., 2007, 28: 948
[13] Liu Q K.Basic Principle of Material Forming [M]. Beijing: China Machine Press, 2005(刘全坤. 材料成形基本原理[M]. 北京: 机械工业出版社, 2005)
[14] Li W Y, Wang F F.Modeling of continuous drive friction welding of mild steel[J]. Mater. Sci. Eng., 2011, 528A: 5921
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.