Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (4): 284-290    DOI: 10.11901/1005.3093.2014.747
  本期目录 | 过刊浏览 |
Fe含量对FeSiBPCu合金非晶晶化行为与磁性能的影响
崔立英1(),齐民2,牧野彰宏3
1. 大连海事大学交通运输装备与海洋工程学院 大连 116026
2. 大连理工大学材料科学与工程学院 大连 116024
3. 东北大学金属材料研究所 日本仙台 980-8577
Effect of Fe Content on Crystallization Behaviors and Magnetic Properties of Amorphous Alloys Fex(SiB)96-xP3Cu1
Liying CUI1,**(),Min QI2,Akihiro MAKINO3
1. Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
引用本文:

崔立英,齐民,牧野彰宏. Fe含量对FeSiBPCu合金非晶晶化行为与磁性能的影响[J]. 材料研究学报, 2015, 29(4): 284-290.
Liying CUI, Min QI, Akihiro MAKINO. Effect of Fe Content on Crystallization Behaviors and Magnetic Properties of Amorphous Alloys Fex(SiB)96-xP3Cu1[J]. Chinese Journal of Materials Research, 2015, 29(4): 284-290.

全文: PDF(3302 KB)   HTML
摘要: 

用熔体快淬法制备不同Fe含量的FeSiBPCu非晶合金并进行快速退火处理, 对其晶化行为和磁性能进行了深入研究。结果表明: 随着Fe含量的增加, FeSiBPCu合金的表观晶化激活能逐渐降低; FeSiBPCu合金的整个晶化过程析出相一致, 与Fe含量无关; Fex(SiB)96-xP3Cu1 (x=80, 83 and 85)合金退火后得到均匀的纳米晶组织, 晶粒尺寸小于20 nm, 但是退火态Fe78Si6B12P3Cu1和Fe75Si8B13P3Cu1的晶粒大小很不均匀, 晶粒尺寸范围为5-50 nm; 退火态Fe85Si3B8P3Cu1合金表现出优异的软磁性能:矫顽力为12 A·m-1, 饱和磁极化强度为1.87 T, 在最大磁感应强度为1.7 T时铁损仍低于1.0, 远优于广泛使用的退火态Fe78Si9B13和无取向硅钢。

关键词 金属材料铁基非晶合金非晶晶化软磁性能表观晶化激活能    
Abstract

Crystallization behavior and soft magnetic properties of amorphous alloys Fex(SiB)96-xP3Cu1 (x=75, 78, 80, 83 and 85, atomic fraction, %) were investigated. It was found that the apparent activation energy for crystallization decreased with the increasing Fe content of the Fex(SiB)96-xP3Cu1 alloys. The phases precipitated after properly complete crystallization treatment were the same for all the alloys with varying Fe content. The annealed Fex(SiB)96-xP3Cu1 (x=80, 83 and 85) alloys exhibited a uniform nanostructure with grain size smaller than 20 nm, while the grain sizes of the alloys with x=75 and 78 ranged from 5 nm to 50 nm. The saturation magnetization enhanced nonlinearly as the Fe content increased from 75 to 85. The nanocrystalline alloy Fe85Si3B8P3Cu1 exhibited excellent soft magnetic properties with a coercivity of 12 Am-1 and a saturation magnetization of 1.87 T. The core loss values of nanocrystalline alloys Fe85Si3B8P3Cu1 and Fe83Si4B9P3Cu1 were still less than 1.0 Wkg-1 even if the saturation magnetic induction intensity was up to 1.7 T, which were superior to that of the commercial Fe78Si9B13 alloy and non-orientated silicon steel.

Key wordsmetallic materials    Fe-based amorphous alloy    nanocrystallization    soft magnetic property    activation energy
收稿日期: 2014-12-17     
基金资助:* 国家自然科学基金面上项目51371042和中央高校基本科研业务费之青年骨干教师基金3132015098资助。
图1  FeSiBPCu合金淬火态薄带的DSC扫描曲线(β=0.67 K/s)
Content (atomic fraction) Tc/K Tx1/K Tp1/K Tx2/K Tp2/K ΔT/K Ex /(kJ/mol) Ep /(kJ/mol) n
Fe75Si8B13P3Cu1 696 789 798 836 840 47 365.1 328.5 2.4
Fe78Si6B12P3Cu1 671 743 753 832 840 89 295.4 273.1 2.5
Fe80Si5B11P3Cu1 645 717 728 829 837 112 274.9 250.0 2.3
Fe83Si4B9P3Cu1 597 680 692 824 830 144 227.1 220.5 2.3
Fe85Si3B8P3Cu1 558 657 671 820 825 163 181.8 197.6 2.5
表1  Fex(SiB)96-xP3Cu1(x=75、78、80、83和85)合金的热物性参数
图2  淬火态Fex(SiB)96-xP3Cu1(x=75、78、80、83和85)合金的微观组织和XRD谱
图3  退火态Fex(SiB)96-xP3Cu1(x=75、78、80、83和85)合金的微观组织和XRD谱
Content/% 2θ /(°) d /nm a /nm D /nm
Fe75Si8B13P3Cu1 45.00 0.2012 0.2846 28
Fe78Si6B12P3Cu1 44.92 0.2016 0.2850 23
Fe80Si5B11P3Cu1 44.88 0.2017 0.2853 20
Fe83Si4B9P3Cu1 44.84 0.2019 0.2855 18
Fe85Si3B8P3Cu1 44.82 0.2020 0.2856 14
表2  退火态Fex(SiB)96-xP3Cu1(x=75、78、80、83和85)合金中晶格常数与晶粒尺寸
图4  Fex(SiB)96-xP3Cu1 (x=75, 78, 80, 83和85)合金的软磁性能
1 Y. Yoshizawa, S. Oguma, K. Yamauchi,New Fe-based soft magnetic alloys composed of ultrafine grain structure, Journal of Applied Physics, 64(10), 6044(1988)
2 K. Suzuki, N. Kataoka, A. Inoue,High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure, Materials Transactions, JIM, 31(8), 743(1990)
3 K. Suzuki, A. Makino, A. Inoue,Soft magnetic properties of nanocrystalline bcc FeZrB and FeMBCu (M=transition metal) alloys with high saturation magnetization, Journal of Applied Physics, 70(10), 100(1991)
4 M. A. Willard, D. E. Laughlin, M. E. Mechenry,Magnetic properties of hitperm (Fe, Co)88Zr7Cu4B1 magnets, Journal of Applied Physics, 84(12), 6773(1998)
5 M. A. Willard, D. E. Laughlin, M. E. Mechenry,Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys, Journal of Applied Physics, 84(12), 6773(1999)
6 F. E. Luborsky, J. J. Becker, J. L. Walter, H. Liebwemann,Formation and magnetic properties of Fe-B-Si amorphous alloys, IEEE Transactions on Magnetics, 15(4), 1146(1979)
7 M. Mitera, M. Naka, T. Masumoto, N. Kazama, K. Watanabe,Effects of metalloids on the magnetic properties of iron based amorphous alloys, Physica Status Solidi (a), 49(2), K163(1978)
8 A. Makino, A. Inoue, T. Masumoto,Soft magnetic properties of nanocrystalline Fe-M-B(M=Zr, Hf, Nb) alloys with high magnetization, Nanostructured Materials, 6(5-8), 985(1995)
9 A. Makino, M. Bingo, T. Bitoh, K. Yubuta,Improvement of soft magnetic properties by simultaneous addition of P and Cu for nanocrystalline FeNbB alloys, Journal of Applied Physics, 101, 09-N117(2007)
10 A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue,FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 19 Tesla produced by crystallizing hetero-amorphous phase, Materials Transactions, 50, 204(2009)
11 H. Men, L. Y. Cui, T. Kubota, K. Yubuta, A. Makino, A. Inoue,Fe-Rich soft magnetic FeSiBPCu hetero-amorphous alloys with high saturation magnetization, Materials Transactions, 50(6), 1330(2009)
12 A. C.Hsiao, M. E. Mchenry, D. E. Laughlin, M. R. Tamoria, V. G. Harris,Magnetic properties and crystallization kinetics of a Mn-doped FINEMET precursor amorphous alloy, IEEE Transactions on Magnetics, 37(4), 2236(2001)
13 E. Illekov,The crystallization Kinetics of Fe80Si4B16 Metallic Glass, Thermochim. Acta, 280, 289(1996)
14 R. Singhal, A. K. Majumdar,Crystallization of glassy Fe80B20-xSix (0≤x≤12) alloys, Journal of Magnetism and Magnetic Materials, 115(2-3), 245(1992)
15 H. E. Kissinger,Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29(11), 1702(1957)
16 K. Suzuki, M. Kikuchi, A. Makino, T. Masumoto,Changes in microstructure and soft magnetic properties of an Fe86Zr7B6Cu1 amorphous alloy upon crystallization, Materials Transactions, 32(10), 961(1991)
17 Y. R. Zhang, R. V. Ramanujan,Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys, Thin Solid Films, 505(1-2), 97(2006)
18 J. W. Christian, The Theory of Transformation in Metals and Alloys(Oxford, Pergamon Press, 1965)
19 A. Makino, T. Bitoh, A. Inoue, T. Masumoto,Nb-Poor Fe-Nb-B nanocrystalline soft magnetic alloys with small amount of P and Cu prepared by melt-spinning in air, Scripta Materialia, 48(7), 869(2003)
20 A. Makino, H. Men, K. Yubuta, T. Kubota,Soft magnetic FeSiBPCu heteroamorphous alloys with high Fe content, Journal of Applied Physics, 105(1), 013922(2009)
21 F. E. Luborsky, H. H. Liebermann,Crystallization kinetics of Fe-B amorphous alloys, Applied Physics Letters, 33(3), 233(1978)
22 H. Men, L. Y.Cui, T. Kubota, A. Makino, A. Inoue,Fe-Rich soft magnetic FeSiBPCu hetero-amorphous alloys with high saturation magnetization, Materials Transactions, 50(6), 1330(2009)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.