Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (4): 291-298    DOI: 10.11901/1005.3093.2014.404
  本期目录 | 过刊浏览 |
全尾砂-棒磨砂新型胶凝充填材料的制备
王有团1,杨志强1,2,李茂辉1,高谦1()
1. 北京科技大学金属矿山高效开采与安全教育部重点试验室 北京 100083
2. 金川集团股份有限公司 金昌 737100
Preparation of New Backfill Cementitious Materials with Unclassified Tailings-Rod Milling Sands
Youtuan WANG1,Zhiqiang YANG1,2,Maohui LI1,Qian GAO1,**()
1. Key Laboratory of High Efficient Mining and Safety of Metal Mine Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
2. Jinchuan Group Co. LTD, Jinchang 737100, China
引用本文:

王有团,杨志强,李茂辉,高谦. 全尾砂-棒磨砂新型胶凝充填材料的制备[J]. 材料研究学报, 2015, 29(4): 291-298.
Youtuan WANG, Zhiqiang YANG, Maohui LI, Qian GAO. Preparation of New Backfill Cementitious Materials with Unclassified Tailings-Rod Milling Sands[J]. Chinese Journal of Materials Research, 2015, 29(4): 291-298.

全文: PDF(2000 KB)   HTML
摘要: 

将某镍矿选矿全尾砂代替部分棒磨砂作为骨料, 采用正交试验和神经网络预测模型, 制备以铁矿渣粉为活性材料、以脱硫灰、生石灰为主要激发剂的全尾砂-棒磨砂新型胶凝充填材料, 分析了该材料的微观结构及其水化产物。结果表明:全尾砂添加质量分数为30%时, 新型胶凝充填材料3 d、7 d和28 d的抗压强度分别达到1.73 MPa、4.22 MPa和6.93 MPa, 比水泥分别提高了8.13%、51.8%和34.0%, 满足镍矿的充填强度指标。新型胶凝充填材料的主要水化产物为C-S-H凝胶, 团絮状C-S-H凝胶形成结构密实的胶凝体, 将骨料紧密粘结在一起形成较高的力学强度。用这种新型胶凝充填材料可实现30%的全尾砂利用率。

关键词 无机非金属材料新型胶凝充填材料全尾砂-棒磨砂铁矿渣粉    
Abstract

According to an orthogonal experimental design and neural network prediction models, a new kind of backfill cementitious materials of unclassified tailings-rod milling sands is prepared with unclassified tailings partly replaced rod milling sands as aggregates, iron slag powder as the active materials as well as desulphurized ash and quicklime as the main stimulator. Hydration products and microstructures of the backfill cementitious materials are analyzed by XRD and SEM. The results show that with addition of 30% unclassified tailings, the compressive strength of the backfill cementitious materials cured for 3 days, 7 days and 28 days reaches 1.73 MPa, 4.22 MPa and 6.93 MPa, and the corresponding increment is 8.13%, 51.8% and 34.0% respectively in comparison with the ordinary cement, and these strength values can meet the backfill strength index of Jinchuan Nickel mine. The hydration products of the new backfill cementitious materials are mainly C-S-H gel and flocculent CSH gel, which form dense gel and bond the aggregates together resulting in the high mechanical strength of the materials. Therefore, utilization of 30% unclassified tailings can be achieved for the nickel mine company through producing this new backfill cementitious materials.

Key wordsinorganic non-metallic materials    new backfill cementitious materials    unclassified tailings-rod milling sands    iron slag powder
收稿日期: 2014-08-11     
基金资助:* 国家高技术研究发展计划SS2012AA062405资助项目。
Sample Silicon dioxide/% Ferric oxide/% Calcium oxide/% Magnesium oxide/% Aluminium oxide/% Sulfur/%
Iron slag powder 35.52 - 41.35 8.15 12.14 -
Rod milling sands 63.60 3.44 1.39 3.68 5.96 -
Unclassified tailings 36.31 9.51 3.86 28.15 3.39 0.67
表1  材料物化特性
Aggregate d10/mm d50/mm d60/mm d90/mm dp/mm Asymmetrical coefficient (d60/d10)
Rod milling sands 0.163 0.863 1.331 3.153 0.620 8.2
Unclassified tailings 0.002 0.034 0.144 0.037 22.5
表2  骨料粒级特征参数
No. Ratio of unclassified tailings with rod milling sands Quicklime /% Desulphurized ash /% Mirabilite /% Iron slag powder /% Compressive strength /MPa
3 d 7 d 28 d
1 2:8 5.5 16 2 73.0 1.23 5.39 6.32
2 2:8 6.0 17 3 71.0 0.83 5.51 5.61
3 2:8 6.5 18 4 69.0 1.02 5.14 5.68
4 3:7 5.5 17 4 71.0 0.80 3.50 7.73
5 3:7 6.0 18 2 70.5 0.74 4.33 6.95
6 3:7 6.5 16 3 71.5 0.31 5.21 7.04
7 4:6 5.5 18 3 70.5 0.42 4.96 9.00
8 4:6 6.0 16 4 71.5 0.55 3.34 8.99
9 4:6 6.5 17 2 71.0 0.77 3.72 7.15
表3  全尾砂-棒磨砂新型充填胶凝材料的正交试验结果
Cube time Parameter Ratio of unclassified tailings with rod milling sands Quicklime Desulphurized ash Mirabilite
3 d Range(Rj) 0.45 0.12 0.10 0.39
Optimal value 0:1 5.50 17.0 4.00
7 d Range(Rj) 2.08 1.03 0.90 1.97
Optimal value 0:1 6.50 18.0 3.00
28 d Range(Rj) 2.51 1.06 0.62 0.66
Optimal value 4:6 5.50 16.0 2.00
表4  正交试验数据方差分析
图1  抗压强度平均收率与全尾砂∶棒磨砂比值的变化关系
图2  神经网络强度预测模型训练结果的分析图
No. Ratio of unclassified tailings with rod milling sands Quicklime/% Desulphurized ash/% Mirabilite/% Iron slag powder/% Compressive strength of forecast value/MPa Compressive strength of experiment value/MPa
3 d 7 d 28 d 3 d 7 d 28 d
1 2∶8 6.2 17.6 2.0 74.6 2.03 5.20 5.28 1.91 5.27 6.00
2 3∶7 5.5 16.5 2.5 74.0 1.44 4.02 6.56 1.47 3.92 7.34
3 4∶6 5.0 16.0 3.0 72 1.18 3.55 9.86 1.14 3.72 9.84
表5  全尾砂-棒磨砂新型充填胶凝材料强度的预测与验证结果
No. X1 X2 X3 X4 X5 X6 Compressive strength of 3d/MPa No. X1 X2 X3 X4 X5 X6 Compressive strength of 3d/MPa
1 5.0 16.5 2.0 0.5 0.0 76.0 1.43 9 6.0 16.5 3.0 2.0 0.5 72.0 1.67
2 5.0 17.0 2.5 1.0 0.5 74.0 1.36 10 6.0 17.0 3.5 1.5 0.0 72.0 1.64
3 5.0 17.5 3.0 1.5 1.0 72.0 1.64 11 6.0 17.5 2.0 1.0 1.5 72.0 1.59
4 5.0 18.0 3.5 2.0 1.5 70.0 1.68 12 6.0 18.0 2.5 0.5 1.0 72.0 1.51
5 5.5 16.5 2.5 1.5 1.5 72.5 1.73 13 6.5 16.5 3.5 1.0 1.0 71.5 1.62
6 5.5 17.0 2.0 2.0 1.0 72.5 1.59 14 6.5 17.0 3.0 0.5 1.5 71.5 1.45
7 5.5 17.5 3.5 0.5 0.5 72.5 1.44 15 6.5 17.5 2.5 2.0 0.0 71.5 1.63
8 5.5 18.0 3.0 1.0 0.0 72.5 1.63 16 6.5 18.0 2.0 1.5 0.5 71.5 1.47
表6  3∶7比例胶凝材料早强剂试验结果
Ratio of unclassified tailings with rod milling sands Compressive strength /MPa (Cement 32.5R) Compressive strength/MPa (new backfill cementitious materials)
3 d 7 d 28 d 3 d 7 d 28 d
2∶8 2.01 3.62 4.99 2.27 5.58 5.87
3∶7 1.60 2.78 5.17 1.73 4.22 6.93
4∶6 1.28 3.25 5.27 1.34 3.86 8.25
表7  新型充填胶凝材料与水泥胶砂试验结果对比分析
图3  新型充填胶凝材料与水泥胶凝材料全尾砂-棒磨砂胶砂试验不同龄期XRD谱
图4  新型充填胶凝材料全尾砂-棒磨砂胶砂和水泥胶凝材料全尾砂-棒磨砂胶砂不同龄期水化产物的SEM像
1 ZHOU Aimin, Cemented Filling with Mining Wastes(Beijing, Metallurgical Industry Press, 2007)p.50
1 (周爱民, 矿山废料胶结充填(北京, 冶金工业出版社, 2007)p.50)
2 YU Runcang,Development and innovation of cemented filling technology in China, J. China Mine Engineering, 39(5), 1(2010)
2 (于润沧, 我国胶结充填工艺发展的技术创新, 中国矿山工程, 39(5), 1(2010))
3 ZHAO Chuanqin,HU Nailian, Development and application of cementing filling materials, J. Gold, 29(1), 25(2008)
3 (赵传卿, 胡乃联, 充填胶凝材料的发展与应用, 黄金, 29(1), 25(2008))
4 MENG Yuehui,NI Wen, ZHANG Yuyan, Current state of ore tailings reusing and its future development in China, J. China Mine Engineering, 39(5), 4(2010)
4 (孟跃辉, 倪 文, 张玉燕, 我国尾矿综合利用发展现状与前景, 中国矿山工程, 39(5), 4(2010))
5 ZHANG Deming,WANG Li, ZHAO Bin, Cemented backfilling technology with unclassified tailings based on active materials, J. China Mine Engineering, 39(2), 6(2010)
5 (张德明, 王 莉, 赵 彬, 基于活性材料的全尾砂胶结充填技术, 中国矿山工程, 39(2), 6(2010))
6 ZHU Liping,NI Wen, HUANG Di, HUI Mei, GAO Shujie, Whole-tailings backfilling materials with fly ash, Journal of University of Science and Technology Beijing, 33(10), 1190(2011)
6 (祝丽萍, 倪 文, 黄 迪, 惠 美, 高术杰, 粉煤灰全尾砂胶结充填料, 北京科技大学学报, 33(10), 1190(2011))
7 DONG Lu,GAO Qian, NAN Shiqing, DU Juqiang, Performance and hydration mechanism of new super fine cemented whole-tailings backfilling materials, Journal of Central South University (Science and Technology), 44(4), 1571(2013)
7 (董 璐, 高 谦, 南世卿, 杜聚强, 超细全尾砂新型胶结充填料水化机理与性能, 中南大学学报(自然科学版), 44(4), 1571(2013))
8 XU Wenbin,DU Jianhua, SONG Weidong, CHEN Haiyan, Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials, J. Rock and Soil Mechanics, 31(5), 48(2012)
8 (徐文彬, 杜建华, 宋卫东, 陈海燕, 超细全尾砂材料胶凝成岩机理试验, 岩土力学, 31(5), 48(2012))
9 B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, I. Alp,Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cement & Concrete Composites, 31, 268(2009)
10 XIE Changjiang,HE Zhexiang, XIE Xuwen, ZHANG Changqinget, Application of blast-furnace slag at zhangmatun iron mine, J. China Mining Magazine, (2), 31(1998)
10 (谢长江, 何哲祥, 谢续文, 张常青, 高炉水渣在张马屯铁矿充填中的应用, 中国矿业, (2), 31(1998))
11 LI Yifan,ZHANG Jianming, DENG Fei, Experimental study on strength characteristics of tailings cement backfilling at deep-seated mined-out area, J. Rock and Soil Mechanics, 26(6), 865(2005)
11 (李一帆, 张建明, 邓 飞, 深部采空区尾砂胶结充填体强度特性试验研究, 岩土力学, 26(6), 865(2005))
12 J. L. Provis, R. J. Myers, C. E. White, V. Rose, J. S. J. V. Deventer,X-ray microtomography shows pore structure and tortuosity in alkali- activated binders, Cement and Concrete Research, 42(6), 855(2012)
13 A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, H. Deveci,Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Engineering Geology, 123, 288(2011)
14 ZHU Liping,NI Wen, ZHANG Xufang, HUANG Xiaoyan, Performance and microstructure of cemented whole-tailings backfilling materials based on red mud, slag and cement, Journal of University of Science and Technology Beijing, 32(7), 838(2010)
14 (祝丽萍, 倪 文, 张旭芳, 黄晓燕, 赤泥-矿渣-水泥基全尾砂胶结充填料的性能与微观结构, 北京科技大学学报, 32(7), 838(2010))
15 M. Benzaazoua, T. Belem, B. Bussie`re,Chemical factors that influence the performance of mine sulphidic paste backfill, Cement and Concrete Research, 32, 1133(2002)
16 B. Ercikdi, H. Baki, M. Izki,Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, Journal of Environmental Management, 115, 5(2013)
17 E. Yilmaz, T. Belema, M. Benzaazoua,Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Engineering Geology, 168, 23(2014)
18 C. Li, H. H. Sun, J. Bai, L. T. Li,Innovative methodology for comprehensive utilization of iron ore tailings Part 1: The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting, Journal of Hazardous Materials, 174, 71(2010)
19 C. Li, H. H. Sun, Z. L. Yi, L. T. Li,Innovative methodology for comprehensive utilization of iron ore tailings Part 2: The residuesafter iron recovery from iron ore tailings to prepare cementitious material, Journal of Hazardous Materials, 174, 78(2010)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.