Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (9): 710-714    DOI: 10.11901/1005.3093.2014.149
  本期目录 | 过刊浏览 |
以硅酸钠为前驱物用间隔自组装法制备等级介孔二氧化硅*
吴南1,王伟2(),潘浩1,茹红强2
1. 国网辽宁省电力有限公司电力科学研究院化学所 沈阳 110006
2. 东北大学材料与冶金学院 沈阳 110819
Preparation of Hierarchically Mesoporous Silicas via Partitioned Cooperative Self-assembly Using Sodium Silicate as Precursor
Nan WU1,Wei WANG2,**(),Hao PAN1,Hongqiang RU2
1. Chemistry Division, Electric Power Research Institute, State Grid Liaoning Electric Power Ltd, Shenyang 110006
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

吴南,王伟,潘浩,茹红强. 以硅酸钠为前驱物用间隔自组装法制备等级介孔二氧化硅*[J]. 材料研究学报, 2014, 28(9): 710-714.
Nan WU, Wei WANG, Hao PAN, Hongqiang RU. Preparation of Hierarchically Mesoporous Silicas via Partitioned Cooperative Self-assembly Using Sodium Silicate as Precursor[J]. Chinese Journal of Materials Research, 2014, 28(9): 710-714.

全文: PDF(3363 KB)   HTML
摘要: 

以硅酸钠为前驱物, 以三嵌段共聚物(P123)为模板剂, 用间隔自组装法(即PCSA法)制备了具有等级孔结构的介孔二氧化硅。结果表明: 间隔条件等级孔结构的形成起到了关键作用, 在加入量合适和间隔时间条件下间隔法允许在不使用添加剂、复合模板剂及特殊的制备条件下使用较廉价的硅酸钠制备有序的等级介孔二氧化硅。等级介孔二氧化硅的第一级介孔孔径约9 nm, 第二级大孔径分布较宽, 介于20-200 nm。而在特定的间隔条件下(SS6-4h-4.5与SS3-4h-7.5), 可制备出第一级有序的等级介孔二氧化硅。

关键词 无机非金属材料介孔材料二氧化硅间隔自组装硅酸钠    
Abstract

Hierarchically mesoporous silicas could be prepared by means of a previously reported partitioned cooperative self-assembly process (PCSA process) using nonionic triblock copolymer surfactant (P123) as template and sodium silicate as silica precursor. It was found that the partitioning conditions play a key role in inducing the formation of hierarchically mesoporous structures. Under suitable partitioning conditions, in terms of the amounts of sodium silicate in two partitioned additions and interval time between them, the PCSA process allows the preparation of hierarchically ordered mesoporous silicas based on cheap sodium silicate via such a simple templating system, without resorting to additives, multiple templates or complicated synthetic conditions. The size of the first series mesopores is around 9 nm, while the second series of large pores possesses broadened pore size distributions ranging from 20 nm to 200 nm. Under certain partitioning conditions (SS6-4h-4.5 and SS3-4h-7.5), hierarchically mesoporous silicas with the first series of ordered mesopores can be prepared.

Key wordsinorganic non-metallic materials    mesoporous    silica    partitioned cooperative self-assembly    sodium silicate
收稿日期: 2014-04-01     
基金资助:*国家自然科学基金21201030, 国家自然科学基金重点项目51032007, 中央高校基本科研业务费专项资金N120410001和国网辽宁电力有限公司创新课题2013YF-4资助项目。
图1  介孔二氧化硅的N2吸附-脱附等温曲线(部分等温线分别向上平移300, 500和800 cm3/g (STP))
图2  由图1N2吸附曲线根据BJH模型计算出的孔径分布图
图3  介孔二氧化硅的场发射SEM像
图4  介孔二氧化硅SS5-4h-5.5的TEM像
图5  介孔二氧化硅的低角XRD谱
1 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359(6397), 710(1992)
2 Y. Wan, Y. F. Shi, D. Y. Zhao,Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach, Chemical Communications, 897(2007)
3 Su B, Sanchez C, Yang X. Hierarchically structured porous materials, from nanoscience to catalysis, separation, optics, energy, and life science, Wiley-VCH Verlag GmbH & Co. KGaA, (2012)
4 S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger,Zeolitic materials with hierarchical porous structures, Advanced Materials, 23(22-23), 2602(2011)
5 X.-Y. Yang, A. Léonard, A. Lemaire, G. Tian, B.-L. Su,Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications, Chemical Communications, 47(10), 2763(2011)
6 Y. Wang, F. Caruso,Enzyme encapsulation in nanoporous silica spheres, Chemical Communications, 1528(2004)
7 Y. Wan, D. Y. Zhao,On the controllable soft-templating approach to mesoporous silicates, Chemical Reviews, 107(7), 2821(2007)
8 W. Wang, W. J. Shan, H. Q. Ru,Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate, Journal of Materials Chemistry, 21(43), 17433(2011)
9 W. Wang, W. J. Shan, H. Q. Ru, N. Wu,A facile and versatile partitioned cooperative self assembly process to prepare SBA-15s with larger mesopores, high microporosity and tunable particle sizes, Journal of Materials Chemistry, 21(32), 12059(2011)
10 W. Wang, H. Qi, H. B. Long, X. Y. Wang, H. Q. Ru,A simple ternary nonionic templating system for preparation of complex hierarchically meso-mesoporous silicas with 3D interconnected large mesopores, Journal of Materials Chemistry A, 2(15), 5363(2014)
11 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia,Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science, 269(5288), 1242(1995)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.