Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (7): 515-520    DOI: 10.11901/1005.3093.2013.612
  本期目录 | 过刊浏览 |
Ru-Cr下底层成分对Co-W磁性薄膜结构和磁性能的影响*
王建军1,2(),高崇2,刘春明1,2
1. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2. 东北大学材料与冶金学院 沈阳 110819
Influence of Composition of Ru-Cr Buffer Layers on Crystal Structure and Magnetic Property of Co-W Magnetic Films
Jianjun WANG1,2,**(),Chong GAO2,Chunming LIU1,2
1. Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

王建军,高崇,刘春明. Ru-Cr下底层成分对Co-W磁性薄膜结构和磁性能的影响*[J]. 材料研究学报, 2014, 28(7): 515-520.
Jianjun WANG, Chong GAO, Chunming LIU. Influence of Composition of Ru-Cr Buffer Layers on Crystal Structure and Magnetic Property of Co-W Magnetic Films[J]. Chinese Journal of Materials Research, 2014, 28(7): 515-520.

全文: PDF(874 KB)   HTML
摘要: 

用直流磁控溅射在300℃不同Ru-x% Cr (x=0, 20, 40)下底层沉积制备了Co-15% W(原子分数)磁性薄膜。用XRD表征了薄膜的精细晶体结构, 分析了Co-W和Ru-Cr层的取向关系, 估算了薄膜层的晶格常数、c轴分散角、fcc/hcp体积百分比和堆垛层错密度值。结果表明, 随着Ru-Cr下底层Cr成分的增加Co-W磁性层和Ru-Cr下底层间的晶格错配度降低, hcp-Co的晶格常数比c/a随之减小。磁性能测试结果证实, 由于Co-W磁性层中晶格常数比c/a的减小磁性层的磁各向异性能显著提高。

关键词 金属材料Co-W磁性薄膜XRD晶体结构磁各向异性能    
Abstract

Thin films of magnetic alloy Co-15% W (atomic fraction) were deposited by DC magnetron sputtering on buffer layers of alloys Ru - x% Cr (atomic fraction, x=0, 20, 40) at 300℃, which were pre-deposited on a substrate of MgO(111) by the same process. The crystallographic structure of the films was examined by X-ray diffraction in terms of the epitaxial relationship between Co-W and Ru-Cr, the lattice parameters, the mosaic spread, the volume ratio of face centered cubic phase to hexagonal close-packed phase and the stacking fault densities. It was found that the lattice constant ratio c/a of hcp Co-W reduced with increasing Cr content x of Ru-Cr films due to the reduction of lattice misfit between Co-W magnetic films and Ru-Cr buffer layers. A clear correlation between the crystallographic structure and the magnetic anisotropy energy (MAE) of Co-W was confirmed, that is, the MAE was significantly enhanced with the reduction of c/a.

Key wordsmetallic materials    Co-W magnetic film    X-ray diffraction    crystallographic structure    magnetic anisotropy energy
收稿日期: 2013-08-26     
基金资助:* 国家自然科学基金青年基金50901016、中央高校基本科研业务费N090402005和教育部留学回国人员启动基金资助项目。
图1  不同成分RuCr下底层上沉积的Co85W15薄膜(膜厚25 nm)和不同膜厚Co85W15薄膜的X射线衍射图谱
图2  典型Co85W15/Ru100-xCrx (x=20, 40)薄膜的w扫描结果(摇摆曲线) 、Co{101} 和Ru {101}的f扫描结果
图3  Co85W15/Ru100-xCrx (x =0, 20, 40)薄膜fcc/hcp比随膜厚的变化, 内插图为Co85W15/Ru80Cr20薄膜中fcc-Co(111)和hcp- Co(101)峰的衍射图谱对照
图4  Co85W15/ Ru100-xCrx (x=20, 40)薄膜堆垛层错与膜厚的关系
图5  Co85W15薄膜晶格常数比与膜厚的关系曲线
图6  Co-W磁性层和Ru-Cr下底层间的a轴错配度
图7  Co-W薄膜在外加磁场下的磁化(a) 磁化示意图; (b) 典型的磁化回线(Co85W15/Ru80Cr20 (50 nm) 薄膜)
图8  Co85W15/ Ru100-xCrx (x=0, 20, 40)薄膜的磁各向异性常数Ku
1 ZENG Fanhao,GU Yi, HUANG Boyun, Research status and development tendency of Co-Cr based magnetic film materials, Materials Review, 22(5), 1(2008)
1 (曾凡浩, 古 一, 黄伯云, CoCr基磁性薄膜材料的研究现状和发展趋势, 材料导报, 22(5), 1(2008))
2 D. Weller, A. Moser, L. Folks, M. E. Best,W Lee, M. F. Toney, M. Schwickert, J. Thiele, M. F. Doerner, High Ku materials approach to 100 Gbits/in2, IEEE Transactions on Magnetics, 36, 10(2000)
3 N. Chowdhury, S. Bedanta, G. S. Babu,Study of magnetization reversal processes in a thin Co film, Journal of Magnetism and Magnetic Materials, 336, 20(2013)
4 QIN Gaowu, K. Oikawa,Thermodynamic considerations on development of ultra-high density magnetic recording media, Journal of Materials and Metallurgy, 4(2), 142(2005)
4 (秦高梧, 及川胜成, 超高密度磁记录介质研究的热力学基础, 材料与冶金学报, 4(2), 142(2005))
5 Cheng Gang,Gu Zhengfei, He Wei, Deng Ting, Effect of Pr on the structure and magnetic properties of CoPt alloys, Rare Metal Materials and Engineering, 41(2), 189(2012)
6 N. Kikuchi, O. Kitakami, S. Okamoto, Y. Shimada, A. Sakuma, Y. Otani, K. Fukamichi,Influence of 5d transition elements on the magnetocrystalline anisotropy of hcp-Co, Journal of Physics: Condensed Matter, 11, L485(1999)
7 J. J. Wang, Y. Tan, C. M. Liu, O. Kitakami,Crystal structures and magnetic properties of epitaxial Co–W perpendicular films, Journal of Magnetism and Magnetic Materials, 334, 119(2013)
8 K. Oikawa, G. W. Qin, M. Sato, S. Okamoto, O. Kitakami, Y. Shimada, K. Fukamichi, K. Ishida, T. Koyama,Direct observation of magnetically induced phase separation in Co-W sputtered thin films, Applied Physics Letters, 85, 2559(2004)
9 O. Hjortstam, K. Baberschke, J. M. Wills, B. Johansson, O. Eriksson,Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni, Physical Review B, 55, 15026(1997)
10 T. Burkert, O. Eriksson, P. James, S.I. Simak, B. Johansson, L. Nordstr?m,Calculation of uniaxial magnetic anisotropy energy of tetragonal and trigonal Fe, Co, and Ni, Physical Review B, 69, 104426(2004)
11 T. Shimatsu, H. Sato, Y. Okazaki, H. Aoi, H. Muraoka, Y. Nakamura, S. Okamoto, O. Kitakami,Large uniaxial magnetic anisotropy by lattice deformation in CoPt∕ Ru perpendicular films, Journal of Applied Physics, 99, 08G908(2006)
12 J. J. Wang, T. Sakurai, K. Oikawa, K. Ishida, N. Kikuchi, S. Okamoto, H. Sato, T. Shimatsu, O. Kitakami,Magnetic anisotropy of epitaxially grown Co and its alloy thin films, Journal of Physics: Condensed Matter, 21, 185008(2009)
13 T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary alloy phase diagrams, 2nd Ed.,(ASM International 2, 1990) p.1322
14 B. E. Warren, X-Ray Diffraction,(Dover, New York, 1990) p.172
15 D.B. Culity, Elements of X-Ray diffraction,(Addison-Wesley, London, 1978) p.236
16 Jr. W. J. Carr,Theory of ferromagnetic anisotropy, Physical Review, 108, 1158(1957)
17 T. Shimatsu, Y. Okazaki, H. Sato, H. Muraoka, H. Aoi, T. Sakurai, S. Okamoto, O. Kitakami, S. Tanii, A. Sakuma,Uniaxial magnetic anisotropy in Co and Co–Pt based perpendicular films in relation to lattice deformation, Journal of Applied Physics, 103, 07F524(2008)
18 F. Ono,Magnetic Field Dependence of the Magnetocrystalline Anisotropy Energy in hcp Co, Journal of the Physical Society of Japan, 50, 2564(1981)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.