Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 153-160    DOI: 10.11901/1005.3093.2013.335
  本期目录 | 过刊浏览 |
Cu2ZnSnS4纳米晶及其薄膜的制备*
夏冬林(),郑宇辰,黄波,赵修建
武汉理工大学 硅酸盐建筑材料国家重点实验室 武汉 430070
Preparation and Characterization of Cu2ZnSnS4 Nanocrystals and Thin Films
Donglin XIA(),Yuchen ZHENG,Bo HUANG,Xiujian ZHAO
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070
引用本文:

夏冬林,郑宇辰,黄波,赵修建. Cu2ZnSnS4纳米晶及其薄膜的制备*[J]. 材料研究学报, 2014, 28(2): 153-160.
Donglin XIA, Yuchen ZHENG, Bo HUANG, Xiujian ZHAO. Preparation and Characterization of Cu2ZnSnS4 Nanocrystals and Thin Films[J]. Chinese Journal of Materials Research, 2014, 28(2): 153-160.

全文: PDF(5841 KB)   HTML
摘要: 

以乙酰丙酮铜(Cu(AcAc)2)、乙酸锌(Zn(CH3COO)22H2O)、氯化亚锡(SnCl22H2O)、升华硫(S粉)和十二硫醇为原料, 用热注射法合成了Cu2ZnSnS4(CZTS)纳米晶。再将Cu2ZnSnS4纳米晶制成胶体墨水, 用旋涂法制备出Cu2ZnSnS4薄膜。用X射线衍射(XRD)仪、拉曼光谱(RS)仪、透射电镜(TEM)、扫描电镜(SEM)、X射线能量色散谱仪(EDS)和紫外-可见光谱(UV-Vis)分光光度计对CZTS纳米晶及薄膜的晶体结构、微观形貌、化学组成及光学性能进行表征, 研究了注射温度对纳米晶结构、形貌、晶粒大小以及化学组成的影响以及热处理时间对Cu2ZnSnS4薄膜结构、形貌、化学组成和光学性能的影响。结果表明, 在注射温度为180℃时合成的CZTS纳米晶为锌黄锡矿结构, 平均粒径为18 nm。在500℃热处理2 h所制备出的薄膜, 在可见光范围内其吸收系数高达104 cm-1, 禁带宽度为1.45 eV。

关键词 无机非金属材料Cu2ZnSnS4热注射法纳米晶旋涂法    
Abstract

The Cu2ZnSnS4 (CZTS) nanocrystallites were synthesized by hot injection method with starting materials of copper (II) acetylacetonate [Cu (AcAc) 2], zinc acetate [Zn(CH3COO)22H2O], tin(II) chloride dehydrate [SnCl22H2O], elemental sulfur (S) and dodecanethiol. Then CZTS thin films were prepared by spin coating method. The crystallographic structure, morphology, chemical composition and optical properties of CZTS nanocrystallites and their thin films were characterized by X-ray diffraction (XRD), Raman spectrum (RS), transmission electron microscopy (TEM), scanning electron microscope (SEM) with energy dispersive X-Ray spectroscopy (EDS) and UV-Vis transmittance spectroscopy. The influence of injection temperature on the crystallographic structure, morphology, grain size and chemical composition of CZTS nanocrystallites, and the influence of annealing time on the crystallographic, morphology, chemical composition and optical properties of CZTS thin films were investigated respectively. The results show that the CZTS nanocrystallites synthesized at 180 ℃ were consisted of single phase kesterite with an average grain size 18 nm, while the CZTS thin film after annealing at 500℃ for 2h exhibits an absorption coefficient of 104 cm-1 for the visible light and an optical band gap of 1.45 eV.

Key wordsinorganic non-metallic materials    Cu2ZnSnS4    hot injection method    nanocrystallite    spin coating method
收稿日期: 2013-05-20     
基金资助:* 国家自然科学重点基金20101j0121 资助项目。
作者简介: 本文联系人: 夏冬林
图1  不同注射温度CZTS纳米晶的XRD图谱
图2  不同注射温度CZTS纳米晶的Raman光谱
图3  样品A1的TEM和HRTEM照片
图4  样品A2的TEM和HRTEM照片
图5  样品A1的TEM和HRTEM照片
图6  样品A1的TEM和HRTEM照片
Sample Temperature/℃ Cu (%) Zn (%) Sn (%) S (%)
A1 150 30.77 8.33 13.05 47.85
A2 180 26.76 10.31 15.67 47.26
A3 200 28.26 8.79 15.18 47.88
A4 250 24.54 12.96 13.71 48.79
表1  不同注射温度下制备的CZTS纳米晶的EDS结果(原子分数, %)
图7  不同热处理时间CZTS薄膜的XRD图谱
图8  不同热处理时间CZTS薄膜的SEM照片
Sample Annealing time/h Cu (%) Zn (%) Sn (%) S (%)
B0 As-deposited 26.76 10.31 15.67 47.26
B1 1 22.35 13.44 14.93 49.29
B2 1.5 21.77 14.58 13.26 50.38
B3 2 21.37 14.26 13.12 51.26
表2  不同热处理时间下制备的CZTS薄膜的EDS结果(原子分数, %)
图9  不同热处理时间CZTS薄膜的紫外可见吸收光谱
图10  不同热处理时间CZTS薄膜的(ahn)2~(hn)曲线
1 K. Ito, T. Nakazawa,Electrical and optical properties of stannite-type quaternary semiconductor thin films, Japanese Journal of Applied Physics, 27(11), 2094(1988)
2 K. Moriya, J. Watabe, K. Tananka, H. Uchiki,Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition, Physica Status Solidi(c), 3(8), 2848(2006)
3 K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki,Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Solar Energy Materials & Solar Cells, 93(5), 583(2009)
4 Q. J. Guo, H. W. Hillhouse, R. Agrawal,Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, Journal of the American Chemical Society, 131(33), 11672(2009)
5 S. W. Shin, S. M. Pawarb, C. Y. Park, J. H. Yun, J. H. Moon, J. H. Kim, J. Y. Lee,Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Solar Energy Materials & Solar Cells, 95(12), 3202(2011)
6 H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota,Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Solar Energy Materials & Solar Cells, 49(1-4), 407(1997)
7 H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, S.W. Maw, T. Fukano, T. Ito, T. Motohiro,Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique, Applied Physics Express, 1(4), 0412011(2008)
8 Q. J. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal,Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, Journal of the American Chemical Society, 132(49), 17384(2010)
9 T. K. Todorov, K. B. Reuter, D. B. Mitzi,High-ef?ciency solar cell with earth-abundant liquid-processed absorber, Advanced Materials, 22(20), E156(2010)
10 Y. L. Zhou, W. H. Zhou, Y. F. Du, M. Li, S. X. Wu,Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothernal method, Materials Letters, 65(11), 1535(2011)
11 T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi,Beyond 11% ef?ciency: Characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells, Advanced Energy Materials, 3(1), 34(2012)
12 K. Moriya, K. Tanaka, H. Uchiki,Fabrication of Cu2ZnSnS4 thin film solar cell prepared by pulsed laser deposition, Japanese Journal of Applied Physics, 46(9A), 5780(2007)
13 K. Tanaka, N. Moritake, H. Uchiki,Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors, Solar Energy Materials & Solar Cells, 91(13), 1199(2007)
14 T. Todorov, D. B. Mitzi,Direct liquid coating of chalcopyrite light absorbing layers for photovoltaic devices, European Journal of Inorganic Chemistry, 2010(1), 17(2010)
15 Z. H. Zhou, Y. Y. Wang, D. Xu, Y.F. Zhang,Fabrication of Cu2ZnSnS4 screen printed layers for solar cells, Solar Energy Materials & Solar Cells, 94(12), 2042(2010)
16 A. Ennaoui, M. Lux-Steiner, A. Weber, D.A. Ras, I. Kotschau, H.W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Scchlze, A. Kirbs,Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517(7), 2511(2009)
17 XIANG Weidong,YANG Hailong, WANG Jing, ZHAO Yinsheng, ZHONG Jiasong, ZHAO Binyu, LUO Le, XIE Cuiping. Advances in hot-injection synthesis of Culn(Se, S)2 nanomaterials, Materials Review, 26(5), 15(2012)
17 (向卫东, 杨海龙, 王 京, 赵寅生, 钟家松, 赵赋宇, 骆 乐, 谢翠萍, 热注射法制备CuIn(Se, S)2纳米材料的研究进展, 材料导报, 26(5), 15(2012))
18 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,Study of polycrystalline Cu2ZnSnS4 films by Raman scattering, Journal of Alloys and Compounds, 509(28), 7600(2011)
19 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,Growth and Raman scattering characterization of Cu2ZnSnS4 thin films, Thin Solid Films, 517(7), 2519(2009)
20 L. S. Price, I. P. Parkin, A. M. E. Hardy, R. J. H. Clark, Atmospheric pressure chemical vapor deposition of Tin sulfides (SnS, Sn2S3, and SnS2) on glass, Chemical Materials, 11(7), 1792(1999)
21 W. G. Nilsen,Raman spectrum of cubic ZnS, Physical Review, 182(3), 838(1969)
22 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors, Journal of Physics D: Appllied Physics, 43(21), 215403(2010)
23 H. Wei, W. Guo, Y. J. Sun, Z. Yang, Y. F. Zhang,Hot-injection Synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals, Materials Letters, 64(13), 1424(2010)
24 K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki,Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency, Solar Energy Materials & Solar Cells, 95(3), 838(2011)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.