Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (6): 577-582    
  研究论文 本期目录 | 过刊浏览 |
CaO过剩型Ca1-xZrO3-δ陶瓷的阻抗行为研究
李慧玉, 郭兴敏
北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
Impedance Behavior of Excess CaO Type Ca1−xZrO3−δ Ceramics
LI Huiyu, GUO Xingmin
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083
引用本文:

李慧玉 郭兴敏. CaO过剩型Ca1-xZrO3-δ陶瓷的阻抗行为研究[J]. 材料研究学报, 2012, 26(6): 577-582.
LI Huiyu GUO Xingmin. Impedance Behavior of Excess CaO Type Ca1−xZrO3−δ Ceramics[J]. Chinese Journal of Materials Research, 2012, 26(6): 577-582.

全文: PDF(1109 KB)  
摘要: 

采用共沉淀法制备CaO过剩型的Ca1-xZrO3-δ, 用交流阻抗法研究了阻抗行为。结果表明: C1.2Z试样前驱体在1000℃焙烧后生成较纯的斜方CaZrO3相; 试样的总电导率随着温度的升高而显著增大, 其活化能为1.17 eV; 随着温度的升高, 试样的弛豫时间和电容均显著减小; 在低温晶界的介电常数明显高于晶粒的, 进而推测出氧离子缺陷分布不均和CaO对Ca1-xZrO3-δ基体的非均匀; 随着温度的升高介电常数显著减小, 表明氧空位的分布逐渐趋于均匀化。

关键词 无机非金属材料锆酸钙交流阻抗介电常数氧空位    
Abstract

Excess CaO type non-stoichiometric calcium zirconate was prepared by a co-precipitation method, and the impedance properties was investigated by AC impedance determination. The results show that precursor powder can be synthesized into pure orthorhombic CaZrO3, the total electrical conductivity significantly increases with temperature increases, and the activation energy was calculated to be 1.17eV. Both relaxation time and capacitance decrease dramatically with the rising of temperature. The permittivity of grain boundary was found higher than that of grain at low temperature. In this way, the heterogeneous distribution of oxygen vacancies was indicated, and the doping mechanism of CaO in Ca1−xZrO3−δ matrix was deduced to be heterogeneous. However, permittivity decreases evidently with temperature rises, which
suggests the oxygen vacancies distribute more homogeneously at higher temperature.

Key wordsinorganic non-metallic materials    calcium zirconate    AC impedance    permittivity    oxygen vacancy
收稿日期: 2012-05-28     
ZTFLH:  TB321  
基金资助:

国家自然科学基金50974012资助项目。

1 G.Yao, X.Wang, T.Sun, L.Li, Effects of CaZrO3 on X8R nonreducible BaTiO3-Based dielectric ceramics, J. Am. Ceram. Soc., 94(11), 3856(2011)

2 L.A.Dunyushkina, S.V.Plaksin, A.A.Pankratov, L.A.Kuz’mina, V.M.Kuimov, V.P.Gorelov, Synthesis and Properties of CaZrO3 Films on YSZ Electrolyte Surface, Russ. J. Electrochem., 47(11), 1274(2011)

3 D.Janke, Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts, Metall. Trans., 13B, 227(1982)

4 M.Dudek, Usefulness of gel-casting method in the fabrication of nonstoichiometric CaZrO3-based electrolytes for high temperature application, Mater. Res. Bull., 44(8), 1879(2009)

5 LI Wei, ZHOU Guangjun, ZHANG Aiyu, DU Qingqing, ZHOU Haifeng, ZHAN Jie, Preparation and luminescence properties of rare earth-doped calcium zirconate nanocrystal, Journal of the Chinese Ceramic Society., 39(11), 1729(2011)

(李  玮, 周广军, 张爱玉, 杜青青, 周海峰, 展 杰, 稀土离子掺杂锆酸钙纳米晶的制备及发光性质, 硅酸盐学报,  39(11), 1729(2011))

6 G.R´og, A. Kozlowska-R´og, M.Dudek, The standard Gibbs free energy of formation of calcium chromium (y) oxide in the temperature range (1073 to 1273 K), J. Chem. Thermodynamics.,

39(2), 275(2007)

7 G.R´og, M.Dudek, A.Kozlowska-R´og, M.Bu´cko, Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells, Electrochimica. Acta., 47(28), 4523(2002)

8 M.Dudek, Miroslaw M.Bu´cko, Electrical properties of stoichiometric and non-stoichiometric calcium zirconate, Solid State Ionics., 157(1-4), 183(2003)

9 S.C.Hwang, G.M.Choi, The effect of cation nonstoichiometry on the electrical conductivity of CaZrO3, J. Eur. Ceram. Soc., 25(12), 2609(2005)

10 S.C.Hwang, G.M.Choi, The mixed ionic and electronic conductivity of CaZrO3 with cation nonstoichiometry and oxygen partial pressure, Solid State Ionics., 179(21-26), 1042(2008)

11 I.E.Gonenli, A.G.Tas, Chemical synthesis of pure and Gddoped CaZrO3 powders, J. Eur. Ceram. Soc., 19(13-14), 2563(1999)

12 L van. Rij, L.Winnubst, L.Jun, J.Schoonman, Analysis of the preparation of In-doped CaZrO3 using a peroxooxalate complexation method, J. Mate. Chem., 10, 2515(2000)

13 J.Han, Z.Wen, J.Zhang, Z.Gu, X.Xu, Fabrication of dense CaZr0.90In0.10O3−δ ceramics from the fine powders prepared  by an optimized solid-state reaction method, Solid State Ionics., 179(21-26), 1108(2008)

14 M.Dudek, M.M.Bu´cko, Ceramic electrolytes based on (Ba1−xCax)(Zr0.9Y0.1)O3 solid solution, J. Solid State Electrochem., 14(4), 565(2010)

15 Z.Li, W.E.Lee, Low-temperature synthesis of CaZrO3 powder from molten salts, J. Am. Ceram. Soc., 90(2), 364(2007)

16 V.Krishnan, J.W.Fergus, Effects of dispersant addition on the synthesis of indium-doped calcium zirconate by co-precipitation techniques, J. Mater. Sci., 42(15), 6117(2007)

17 M.Dudek, E.Dro˙zd˙z-Cie´sla, Some observations on synthesis and electrolytic properties of nonstoichiometric calcium zirconate, J. Alloys. Compd., 475(1-2), 846(2009)

18 SHI Meilun, AC Impedance Spectroscopy Principles and Applications (Beijing, National Defence Industry Press, 2001) p.17

(史美伦, 交流阻抗谱原理及应用,  (北京, 国防工业出版社, 2001) p.17)

19 N.M.Beekmans, L.Heyne, Correlation between impedance, microstructure and composition of calcia-stabilized zirconia, Electrichim Acta., 21(4), 303(1976)

20 CHENG Jinrong, SHI Guiyang, QI Yufa, CHEN Jianguo, YU Shengwen, Impedance spectroscopy study of high temperature BiFeO3-PbTiO3 based ceramics, Journal of Shanghai University (Natural Science)., 17(4), 535(2011)

(程晋荣, 石贵阳, 祁玉发, 陈建国, 俞圣雯, BiFeO3--PbTiO3系高温压电陶瓷的阻抗谱分析, 上海大学学报(自然科学版),  17(4), 535(2011))

21 B.Ramesh, S.Ramesh, R.V.Kumar, M.L.Rao, AC impedance studies on LiFe5−xMnxO8 ferrites, J. Alloys. Compd., 513, 289(2012)

22 Y.J.Li, X.M.Chen, R.Z.Hou, Y.H.Tang, Maxwell-Wagner characterization of dielectric relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composite, Solid State Commun., 137(3), 120(2006)

23 X.Guo, Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layers, Solid State Ionics., 81, 235(1995)

24 X.Guo, Z.Wang, Effect of Niobia on the Defect Structure of Yttria-stabilized Zirconia, J. Eur. Ceram. Soc., 18(3), 237(1998)

25 X.Guo, J.Maier, Grain boundary blocking effect in zirconia: a schottky barrier analysis, J. Electrochem. Soc., 148(3), E121(2001)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.