Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (6): 583-589    
  研究论文 本期目录 | 过刊浏览 |
碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟
于祺1, 陈平2, 陆春1
1.沈阳航空航天大学航空航天工程学部 先进聚合物基复合材料制备技术辽宁省重点实验室 沈阳 110136
2.大连理工大学化工学院 先进聚合物基复合材料制备技术辽宁省重点实验室 大连 116024
Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles
YU Qi1,  CHEN Ping2,  LU Chun1
1. School of Aerospace Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136
2. School of Chemical Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Dalian University of Technology, Dalian 116024
引用本文:

于祺 陈平 陆春. 碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟[J]. 材料研究学报, 2012, 26(6): 583-589.
YU Qi CHEN Ping LU Chun. Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles[J]. Chinese Journal of Materials Research, 2012, 26(6): 583-589.

全文: PDF(1109 KB)  
摘要: 

用有限元分析方法模拟热循环过程中碳纤维/双马树脂基复合材料的热应力分布, 采用抛物线屈服准则分析复合材料的潜在破坏区域, 并结合有限元生死单元技术揭示复合材料在热应力作用下的微裂纹分布。结果表明, 复合材料自由端处的热应力大于其内部区域, 其中最大热应力位于自由端处富树脂区的纤维表面;复合材料的潜在破坏区域位于自由端沿纤维与树脂基体间的界面处, 主要的损伤形式为热应力引发微裂纹导致自由端处产生界面脱粘破坏。在进一步的热循环过程中, 热应力得到一定程度的缓解并重新分布, 由复合材料的自由端向内部区域延伸, 导致微裂纹的进一步扩展而使复合材料的界面脱粘程度加重。对CF/BMI复合材料在热循环过程中性能演化的实验结果表明,
热循环效应能够引发纤维与树脂基体之间的界面处形成微裂纹, 导致复合材料的界面粘接性能下降。模拟结果预期了CF/BMI复合材料在实际热循环过程中的潜在破坏区域,
并解析了热循环过程中导致复合材料界面粘接性能降低的根本原因, 表明模拟结果与实验结果相符。

关键词 材料科学基础学科碳纤维/双马复合材料热循环热应力分布有限元分析    
Abstract

Finite element analysis was used to analyze thermal stress distribution in CF/BMI composite under exposure to thermal cycles. Parabolic failure criterion was used to predict the potential failure zone in composite. Birth and death element technique was used to reveal the microcracks distribution in composite induced by thermal stress. Thermal stress at composite free end zone is higher than that in inner zone, and the maximum stress locates at the fiber surface in resin-rich area of free end zone.
The potential failure zones locate at free end zone with the microcracks distributed along the interface, thus leads to interfacial debonding failure in composite. During the following thermal cycle, the thermal stress which is alleviated to some extent and redistributed, extends from free end zone to inner zone, thus exacerbates the degree of interfacial debonding. Properties evolution of CF/BMI composite subjected to thermal cycles were investigated, showing that the interfacial bond property was decreased due to the formation of microcracks along the interface. The numerical simulation results are in good agreement with the experiment results, which reasonably expect the potential failure zone in composite and analyze the reason of decrease in interfacial bond property induced by thermal cycles.

Key wordsfoundational discipline in materials science    CF/BMI composite    thermal cycles    thermal stress distribution    finite element analysis
收稿日期: 2012-09-20     
ZTFLH:  TB332  
基金资助:

国防``十二五''基础科研项目A352xxxxxxx, 辽宁省教育厅科技研究项目L2012055, 三束材料改性国家重点实验室开放课题DP1051204资助项目。

1 WU Liangyi, Application status of advanced composites in aerospace, The 13th Nationwide Symposium of Epoxy Resin Applied Technology Disscourse (Jiangsu, China Epoxy Resins Applied Technology Institute, 2009) p.117

(吴良义, 航空航天先进复合材料现状, 第十三次全国环氧树脂应用技术学术交流会论文集 (江苏, 中国环氧树脂应用技术学会, 2009) p.117)

2 CHEN Ping, LIAO Mingyi, Polymer Synthetic Material Science, the second edition (Beijing, Chemical Industry Press, 2010) p.153

(陈 平, 廖明义, 高分子合成材料学, 第二版  (北京, 化学工业出版社, 2010) p.153)

3 ZHAO Qusen, Low cost of QY8911 bismaleimide resin and its composites, Materials Review, 15(10), 2 (2001) 

(赵渠森, QY8911双马来酰亚胺树脂和复合材料低成本, 材料导报, 15(10), 2 (2001))

4 K.B.Shin, C.G.Kim, C.S.Hong, H.H.Lee, Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments, Composites Part B-Engineering, 31, 223(2000)

5 T.Shimokawa, H.Katoh, Y.Hamaguchi, S.Sanbongi, H.Mizuno, Effect of thermal cycling on microcracking and strength degradation of high temperature poly composite materials for use in next-generation SST structures, Journal of Composite Materials, 36, 885(2002)

6 M.C.Lafarie-Frenot, Damage mechanisms induced by cyclic ply-stresses in carbon-epoxy laminates: Environmental effects, International Journal of Fatigue, 28, 1202(2006)

7 Z.Mei, D.D.L.Chung, Thermal stress-induced thermoplastic composite debonding, studied by contact electrical resistance measurement, International Journal of Adhesion and Adhesives, 20, 135(2000)

8 P.Rosso, K.Varadi, FE macro/micro analysis of thermal residual stresses and failure behavior under transverse tensile  load of VE/CF–fibre bundle composites, Composite Science and Technology, 66(16), 3241(2006)

9 L.G.Zhao, N.A.Warrior, A.C.Long, A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites, International Journal of Solids and Structures, 43, 5449(2006)

10 C.Lu, P.Chen, Y.Gao, W.Qi, Q.Yu, Thermal stress distribution in CF/EP composite in low earth orbit, Journal of Composite Materials, 44, 1729(2010)

11 M.Gherlone, M.D.Sciuva, Thermo-mechanics of undamaged and damaged multilayered composite plates: a sublaminates finite element approach, Composite Structures, 81(1), 125(2007)

12 C.Lu, P.Chen, B.J.Yu, Computer simulation of thermal residual stressof carbon fiber/PPESK composite, Advanced Composites Letters, 16(1), 33(2007)

13 C.Lu, P.Chen, Q.Yu, J.L.Gao, B.J.Yu, Thermal residual stress distribution in carbon fiber/novel thermal plastic composite, Applied Composite Materials, 15, 157(2008)

14 Q.Yu, P.Chen, Y.Gao, J.J.Mu, Y.W.Chen, C.Lu, D.Liu, Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite, Materials Chemistry and Physics, 130, 1046(2011)

[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘晨, 杨理践, 张兴. 人工生物瓣膜血流动力学行为的有限元分析[J]. 材料研究学报, 2018, 32(1): 51-57.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.