Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 141-146    
  研究论文 本期目录 | 过刊浏览 |
Fe3O4十八面体和十二面体的合成及磁性能
李万喜1,2,吕宝亮1, 徐耀1, 吴东1
1.中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001
2.中国科学院研究生院 北京100049
Synthesis and Magnetic Properties of Dodecahedral and Octodecahedral Magnetite
LI Wanxi1,2, LV Baoliang1, XU Yao1,  WU Dong1
1.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001
2.Graduate University of the Chinese Academy of Sciences, Beijing 100049
全文: PDF(945 KB)  
摘要: 在水热合成α--Fe2O3十八面体和十二面体的基础上, 以5% H2+95% N2为还原介质, 通过控制还原条件制备出纯相Fe3O4十八面体和十二面体颗粒。用X射线衍射、扫描电镜、X射线光电子能谱、透射电镜和振动样品磁强计等手段对样品进行了表征。结果表明, 颗粒表面氟离子吸附层的存在是其形貌保持较好的重要原因。
与其它形貌的Fe3O4颗粒比较, 本文合成的多面体Fe3O4颗粒矫顽力较高, 主要归因于吸附的氟离子层和材料的形貌结构。
关键词 无机非金属材料四氧化三铁多面体氟离子磁性能    
Abstract:Octodecahedral and dodecahedral magnetite (Fe3O4) particles were prepared by reducing hematite (α–Fe2O3) polyhedra in 5% H2+95% N2 atmosphere. The samples were characterized by X–ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometer. The results show that the existence of fluorinion adsorption layer on the surface of particles may be primary reason for holding the polyhedral morphology. Magnetic analysis shows that the obtained Fe3O4 polyhedral particles possess higher coercivity than the Fe3O4 particles reported by others, mainly due to the adsorbed fluorinion and the morphology and structure of polyhedral particles.
Key wordsinorganic non-metallic materials    Fe3O4    polyhedra    fluorinion    magnetic properties
收稿日期: 2010-12-03     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金10835008资助项目。

通讯作者: 徐耀     E-mail: xuyao@sxicc.ac.cn

引用本文:

李万喜 吕宝亮 徐耀 吴东. Fe3O4十八面体和十二面体的合成及磁性能[J]. 材料研究学报, 2011, 25(2): 141-146.
LI Mo-Xi, LV Bao-Liang, XU Yao, WU Dong. Synthesis and Magnetic Properties of Dodecahedral and Octodecahedral Magnetite. Chin J Mater Res, 2011, 25(2): 141-146.

链接本文:

https://www.cjmr.org/CN/      或      https://www.cjmr.org/CN/Y2011/V25/I2/141

1 B.P.Jia, L.Gao, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their selfassembly under an external magnetic field, J. Phys. Chem. C, 112, 666(2008)

2 T.Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun., 8, 927(2003)

3 H.M.Fan, J.B.Yi, Y.Yang, K.W.Kho, H.R.Tan, Z.X.Shen, J.Ding, X.W.Sun, M.C.Olivo, Y.P.Feng, Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACSNANO, 3(9), 2798(2009)

4 J.Park, E.Lee, N.M.Hwang, M.Kang, S.C.Kim, Y.Hwang, J.G.Park, H.J.Noh, J.Y.Kim, J.H.Park, T.Hyeon, Onenanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem. Int. Ed., 44(19), 2872(2005)

5 X.M.Liu, S.Y.Fu, H.M.Xiao, Fabrication of octahedral magnetite microcrystals, Materials Letters, 60(24), 2979(2006)

6 S.H.Sun, H.Zeng, D.B.Robinson, S.Raoux, P.M.Rice, S.X.Wang, G.X.Li, Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc., 126, 273(2004)

7 J.L.Zhang, Y.Wang, H.Ji, Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, Journal of Catalysis, 229(1), 114(2005)

8 A.H.Lu, E.L.Salabas, F.Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1223(2007)

9 D.K.Kim, Y.Zhang, J.Kehr, T.Klason, B. Bjelke, M. Muhammed, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain, Magn. Magn. Mater., 225, 256(2001)

10 L.Fu, V.P.Dravid, D.L.Johnson, Self-assembled(SA) bilayer molecular coating on magnetic nanoparticles, Appl. Surf. Sci., 181, 173(2001)

11 Z.L.Liu, X.Wang, K.L.Yao, Synthesis of magnetite nanoparticles in W/O microemulsion, J. Mater. Sci., 39, 2633(2004)

12 S.R.Wan, J.S.Huang, H.S.Yan, K.L.Liu, Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers, J. Mater. Chem., 16, 298(2006)

13 J.Chen, F.B.Wang, K.L.Huang, Y.N.Liu, S.Q.Liu, Preparation of Fe3O4 nanoparticles with adjustable morphology, Journal of Alloys and Compounds, 475, 898(2009)

14 L.J.Zhao, L.F.Duan, Uniform Fe3O4 Octahedra with Tunable Edge Length–Synthesis by a Facile Polyol Route and Magnetic Properties, Eur. J. Inorg. Chem., 36, 5635(2010)

15 D.F.Peng, S.Beysen, Q.Li, J.K.Jian, Y.F.Sun, J.Jiwuer, Hydrothermal growth of octahedral Fe3O4 crystals, Particuology, 7, 35(2009)

16 B.L.Lv, Z.Y.Liu, H.Tian, Y.Xu, D.Wu, Y.H.Sun, Singlecrystalline dodecahedral and octodecahedral α–Fe2O3 particles synthesized by a fluoride anion-assisted hydrothermal method, Adv. Funct. Mater., 20(22), 3987(2010)

17 H.L.Cao, X.F.Qian, C.Wang, X.D.Ma, J.Yin, Z.K.Zhu, High Symmetric 18-facet polyhedron Nanocrystals of Cu7S4 with a hollow nanocage, J. Am. Chem. Soc., 127(46), 16024(2005)

18 R.M.Resendez, O.B.Miguell, M.P.Morales, P.Bonville, C.J.Serna, Microstructural characterization of ellipsoidal iron metal nanoparticles, Nanotechnology, 15(4), 256(2004)

19 F.Jiao, J.C.Jumas, M.Womes, A.V.Chadwick, A.Harrison, P.G.Bruce, Synthesis of ordered mesoporous Fe3O4 and γ–Fe2O3 with rystalline walls using post–template reduction/oxidation, J. Am. Chem. Soc., 128(39), 12906(2006)

20 A.P.Grosvenor, B.A.Kobe, M.C.Biesinger, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface. Anal., 36(12), 1564(2004)

21 M.ET-Tabirou, B.Dupre, C.Gleitzer, Hematite single crystal reduction into magnetite with CO-CO2, Met. Trans. B, 19(2), 315(1988)

22 W.M.Hussage, T.Bakker, M.E.Kock, R.H.Heerema, Influence of reduction conditions on the expansion and microtexture of sintered hematite compacts during the transition to magnetite, Miner. Metallurg. Process, 16(3), 23(1999)

23 X.Y.Li, Z.J.Si, Y.Q.Lei, J.K.Tang, S.Wang, S.Q.Su, S.Y.Song, L.J.Zhao, H.J.Zhang, Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms, CrystEngComm, 12(7), 2060(2010)

24 F.Bodker, M.F.Hansen, C.B.Koch, K.Lefmann, S.Morup, Magnetic properties of hematite nanoparticles, Phys. Rev. B, 61(10), 6826(2000)

25 J.Wang, Q.W.Chen, C.Zeng B.Y.Hou, Magnetic-fieldinduced growth of single-crystalline Fe3O4 nanowires, Adv. Mater., 16(2), 139(2004)

26 J.P.Ge, Y.X.Hu, M.Biasini, W.P.Beyermann, Y.D.Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed., 46, 4344(2007)

27 Y.Xiong, J.Ye, X.Y.Gu, Q.W.Chen, Synthesis and assembly of magnetite nanocubes into flux-closure rings, J. Phys. Chem. C, 111(19), 7002(2007)

28 C.Q.Hu, Z.H.Gao, X.R.Yang, Fabrication and magnetic properties of Fe3O4 octahedra, Chem. Phys. Lett., 429, 516(2006)

29 Y.M.Zhao, C.W.Dunnill, Y.Q.Zhu, D.H.Gregory, W.Kockenberger, Y.H.Li, W. B.Hu, I.Ahmad, D.G.McCartney, Low-temperature magnetic properties of hematite nanorods, Chem. Mater., 19, 916(2007)

30 YAN Mi, PENG Xiaoling, Magnetic Foundation and Magnetic Materials, (Zhejiang University Press, Hangzhou, 2006) p.68

(严密, 彭晓领, 磁学基础与磁性材料 (杭州, 浙江大学出版社, 2006) p.68)

31 Z.L.Wang, Y.Liu, Z.Zhang, Handbook of Nanophase and Nanostructured Materials, Vol III: Materials Systems and Applications I, (Beijing, Tsinghua University Press, 2003) p.239

32 J.Wang, Z.M. Peng, Y.J.Huang, Q.W.Chen, Growth of magnetite nanorods along its easy–magnetizationaxis of [110], Journal of Crystal Growth, 263, 616 (2004)
[1] 王昊, 赵洪峰, 康加爽, 周远翔, 谢清云. B2O3Al2O3共同掺杂ZnO压敏陶瓷的性能[J]. 材料研究学报, 2021, 35(2): 110-114.
[2] 张辰, 韩伟豪, 宫玉梅, 于洋, 曹金城. 中空介孔SiO2的合成及其对Cr的吸附[J]. 材料研究学报, 2021, 35(1): 45-52.
[3] 张明, 王志勇, 罗琴, 代正昆, 黎业生, 吴子平. 基于高活性碳纳米管海绵体载硫的锂硫电池[J]. 材料研究学报, 2021, 35(1): 65-71.
[4] 武梦姣, 任召辉, 田鹤, 韩高荣. 铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控[J]. 材料研究学报, 2020, 34(9): 650-658.
[5] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[6] 施渊吉, 陈显冰, 吴修娟, 王红军, 郭训忠, 黎军顽. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制[J]. 材料研究学报, 2020, 34(8): 628-634.
[7] 宋雪, 李亚凡, 任杰, 钟曜宇, 张红霞, 欧阳顺利. 白云鄂博尾矿含量对微晶玻璃析晶特性和性能的影响[J]. 材料研究学报, 2020, 34(5): 368-378.
[8] 许世鹏, 王华, 陈维铅, 李玉宏, 李玉军, 汪爱英. 超薄四面体非晶碳膜的结构和性能[J]. 材料研究学报, 2020, 34(5): 379-384.
[9] 顾伟, 张志键, 杨佳泉. 制备工艺对非晶磁粉芯磁性能的影响[J]. 材料研究学报, 2020, 34(4): 291-298.
[10] 林文文, 贺笑春, 徐志军, 王子恒, 初瑞清. 添加Bi2WO6ZnO基压敏陶瓷电学性能的影响[J]. 材料研究学报, 2020, 34(4): 285-290.
[11] 王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.
[12] 周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊. 作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性[J]. 材料研究学报, 2020, 34(3): 191-197.
[13] 付勇军,雷家柳,廖庆玲,赵栋楠,张玉成. 残余碳对取向硅钢初次和二次再结晶的影响[J]. 材料研究学报, 2020, 34(2): 118-124.
[14] 唐锦, 李丹, 秦健春, 曾纪术, 何浩, 李益民, 刘晨. Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8)的微观结构和磁性[J]. 材料研究学报, 2020, 34(12): 915-920.
[15] 吴巧凤, 张富, 于月, 张萌, 于华, 樊栓狮. CsPbI2Br无机钙钛矿太阳能电池稳定性的研究进展[J]. 材料研究学报, 2020, 34(11): 811-821.