Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 358-362    
  研究论文 本期目录 | 过刊浏览 |
硒化温度对铜铟镓硒太阳能电池吸收层性能的影响
李春雷,  庄大明,  张弓,  栾和新, 刘江,  宋军
清华大学机械工程系 北京 100084
The Influence of Selenization Temperature on the Properties of CuInGaSe2 Thin Film
LI Chunei, ZHUANG, Daming, ZHANG Gong, LUAN Hexin, LIU Jiang, SONG Jun
Department of Mechanical Engineering, Tsinghua University, Beijing 100084
引用本文:

李春雷 庄大明 张弓 栾和新 刘 江 宋军. 硒化温度对铜铟镓硒太阳能电池吸收层性能的影响[J]. 材料研究学报, 2010, 24(4): 358-362.
, , . The Influence of Selenization Temperature on the Properties of CuInGaSe2 Thin Film[J]. Chin J Mater Res, 2010, 24(4): 358-362.

全文: PDF(904 KB)  
摘要: 

用预制膜硒化法制备铜铟硒系太阳能电池的吸收层CIGSe薄膜, 用X射线荧光分析(XRF)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)和拉曼谱分析(Raman)以及基于霍尔效应分别测定或观测CIGSe薄膜的成分、表面形貌、结构以及电阻率和少数载流子迁移率, 研究了在近玻璃软化点520--560℃区间硒化温度对薄膜成分、表面形貌、结构和电学性能的影响。结果表明: 当硒化温度在520--560℃时, CIGSe薄膜的成分和表面形貌保持不变, 但是随着硒化温度的升高CIGSe薄膜中有序缺陷相(ODC)和Cu--Se短路相增加, 提高了薄膜内的缺陷浓度, 使薄膜的少数载流子迁移率降低、电阻率增大。

关键词 无机非金属材料  太阳能电池  铜铟镓硒  预制膜硒化  硒化温度  ODC相  Cu--Se相    
Abstract

As the absorber layer in CISe-based solar cell CIGSe thin film was prepared by precursorselenization method. The influences of selenization temperature on compositions, morphologies, phase structures and electronic properties of CIGSe thin films were investigated. The compositions, morphologies and phase structures of CIGSe by means of XRF, SEM, XRD and Raman, respectively were analyzed. Based on Hall Effect the resistivities and minority carrier mobilities of CIGSe were tested. The results show that there are no differences in morphologies and compositions of CIGSe films prepared at 520–560oC. Ordered defect compound (ODC) phase and Cu–Se phase increase with the increasing of selenization temperatures, which increases the concentrations of defect in CIGSes and causes the deterioration of electronic properties of thin film.

Key wordsinorganic non-metallic materials     solar cell     CuInGaSe2     precursor-selenization     selenization temperature     ODC phase     Cu-Se phase
收稿日期: 2010-04-07     
ZTFLH: 

TM615

 
基金资助:

国家863项目先进能源技术领域2007AA05Z461资助项目。

[1] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering ( England, John Wiley & Sons Ltd, 2003) p.566~570 [2] J. S. Park, Z. Dong, et al, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction, Journal of applied physics, 87(8),3683-3690(2000) [3] R. Pal, K. K. Chattopadhyay, et a, Effect of etching on the surface morphology and grain boundary parameters of Cu-rich CuInSe2 films , Thin solid films, 254, 111-115(1995) [4] R. Kaigawa, T. Uesugi, Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process, Thin solid films, 517, 2184-2186(2009) [5] Shen Jianyun, W.K. Kim, Thermodynamic description of the ternary compounds in the Cu-In-Se system , Rare Metals, 25(5), 481(2006) [6] S. Niki, P. J. Fons, et al, Effects of the surface Cu2-xSe phase on the growth and properties of CuInSe2 films, Applied physics letters, 74(11), 1630-1632(1999) [7] Liu Fang-fang, Sun Yun, Zhang Li et al, Study on the Diode Characteristics of Cu(In,Ga)Se2 Thin Film Solar Cells, Journal of Synthetic Crystals,38(2), 455-459(2009) (刘芳芳,孙云,张力 等,Cu(In,Ga)Se2薄膜太阳电池二极管特性的研究,人工晶体学报,38(2), 455-459(2009)) [8] T. Schlenker, M. Luis Valero, et al, Grain growth studies of thin Cu(In, Ga)Se2 films, Journal of Crystal Growth, 264, 178–183(2004) [9] V. Alberts, Band gap optimization in Cu(In1-xGax)(Se1-ySy)2 by controlled Ga and S incorporation during reaction of Cu-(In,Ga) intermetallics in H2Se and H2S [J].thin solid films, 517, 2115-2120(2009) [10] Michael Oertel, Thomas Hahn, et al, CuInSe2 solar cells by sequential absorber layer processing, Phys. Status Solidi, 6(5), 1253–1256(2009) [11] Neelkanth G. Dhere, Vivek S. Gade, et al, Development of CIGS2 thin film solar cells,. Materials Science and Engineering B, 116, 303-309(2005) [12] Marika Edoff, CIGS thin film solar cells, (Uppsala University, 2005) [13] Wolfram Witte, Robert Kniese, Michael Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin solid films, 517, 867-869(2008) [14] Philip Jackson, Roland Würz, et al, High Quality Baseline for High Efficiency Cu(In1-x,Gax)Se2 Solar Cells, Prog. Photovolt. Res. Appl.,15, 507–519(2007) [15] V. Alberts, M. Klenk, et al, Phase separation and compositional changes in two-stage ,Thin Solid Film,387,44-46(2001) [16] E.P. Zaretskaya, V.F. Gremenok, et al, Raman spectroscopy of CuInSe2 thin films prepared by selenization,Journal of Physics and Chemistry of Solids, 64, 1989–1993(2003) [17] R Schwarcz, M A Kanehisa, et al, Evolution of Raman spectra as a function of layer thickness in ultra-thin InSe films , J. Phys.: Condens. Matter, 14, 967–973(2002) [18] Xu Chuanming, Xu Xiaoliang, Xu Jun et al, Effect of Structure on Raman Spectra in Cu(In,Ga)3Se5 Thin Films, Chinese Journal of Semiconductors, 25(11), 1423-1428(2004) (徐传明,许小亮,徐军 等,Cu(In,Ga)3Se5薄膜结构的Raman研究,半导体学报,25(11), 1423-1428(2004))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.