Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 11-20    DOI: 10.11901/1005.3093.2024.108
  研究论文 本期目录 | 过刊浏览 |
高性能液体端羧基氟橡胶的氟化加成反应合成
姜帆1,2, 李琬桐1,2, 赵树发3, 石宁1, 张梦霞1, 方庆红1,2, 李东翰1,2()
1 沈阳化工大学材料科学与工程学院 沈阳 110142
2 辽宁省橡胶弹性体重点实验室 沈阳 110142
3 沈阳盖德橡胶制品有限公司 沈阳 110142
Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction
JIANG Fan1,2, LI Wantong1,2, ZHAO Shufa3, SHI Ning1, ZHANG Mengxia1, FANG Qinghong1,2, LI Donghan1,2()
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
3 Shenyang Guide Rubber Products Co. Ltd., Shenyang 110141, China
引用本文:

姜帆, 李琬桐, 赵树发, 石宁, 张梦霞, 方庆红, 李东翰. 高性能液体端羧基氟橡胶的氟化加成反应合成[J]. 材料研究学报, 2025, 39(1): 11-20.
Fan JIANG, Wantong LI, Shufa ZHAO, Ning SHI, Mengxia ZHANG, Qinghong FANG, Donghan LI. Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction[J]. Chinese Journal of Materials Research, 2025, 39(1): 11-20.

全文: PDF(3430 KB)   HTML
摘要: 

基于固体氟橡胶分子链中偏氟乙烯结构的化学属性,用“一锅法”氧化降解/氟化加成协同反应合成了液体端羧基氟橡胶(SCTLF)。构建了以1-氯甲基-4-氟-1,4-二氮二环[2,2,2]辛烷双四氟硼酸盐(Selectflour)为氟化试剂、四丁基氟化铵(TBAF)为亲核试剂、N-溴代丁二酰亚胺(NBS)为亲电试剂的氟化加成反应体系,在消除含氟双键(C=C)的同时,使产物的氟含量和热稳定性提高,实现了高性能化。使用红外光谱(FTIR)、氢谱核磁(1H-NMR)、氟谱核磁(19F-NMR)表征其分子链结构,用凝胶渗透色谱(GPC)和化学滴定分别测试其分子量和端基含量。结果表明,氟化加成反应后合成的SCTLF,其数均分子量为2410,羧基含量为2.30%,C=C含量由0.30 mmol/g降低至0.08 mmol/g,符合Zaitsev序列结构规则的含氟C=C活性较高且加成反应完全,符合Hofmann序列结构规则的含氟C=C有部分残留,其氟含量达到65.47%。SCTLF的玻璃化转变温度(Tg)为-34 ℃,初始热分解温度(Td)显著提高到270 ℃,在20 ℃其动力粘度为46 Pa·s。HDI三聚体可以实现SCTLF的固化,其产物具有优异的力学性能和化学稳定性。

关键词 有机高分子材料氟化加成反应液体氟橡胶一锅法    
Abstract

A high-performance carboxyl-terminated liquid fuoroelastomers (SCTLF) was synthesized by a one-pot oxidative degradation/fluorination addition synergistic reaction for the first time, with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate)(Selectflour) as fluorination reagent, tetrabutylammonium fluoride (TBAF) as nucleophilic reagent, and N-bromosuccinimide (NBS) as electrophilic reagent. This reaction system can simultaneously eliminate the fluorinated double bonds (C=C), increase the fluorine content, enhance their thermal stability, and thereby achieve high performance of the products. The molecular chain structure of the synthesized SCTLF was characterized by using Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and fluorine nuclear magnetic resonance (19F-NMR). Besides, its molecular weight and terminal group content was determined by means of gel permeation chromatography (GPC) and chemical titration method. After the fluorination addition reaction, SCTLF had average molecular weight of 2410, carboxyl content of 2.30%, and C=C content decreased from 0.30 mmol/g to 0.08 mmol/g. The fluorinated C=C conforming to Zaitsev's rule showed high reactivity and complete reaction, while those conforming to Hofmann's rule had some residuals, with a calculated fluorine content of 65.47%. The glass transition temperature (Tg) of SCTLF was -34 oC, and its initial thermal decomposition temperature (Td) significantly increased to 270 oC. At 20 oC, its dynamic viscosity was 46 Pa·s. The curing of SCTLF with HDI trimer resulted in a cured product with excellent mechanical properties and chemical stability.

Key wordsorganic polymer materials    fluorination addition reaction    liquid fluoroelastomers    one-pot method
收稿日期: 2024-03-07     
ZTFLH:  TQ333.93  
基金资助:国家自然科学基金青年基金(52003165);辽宁省青年人才扶持计划(XLYC2203101);辽宁省教育厅基金(LJKMZ20220769);辽宁省自然科学基金(2023-MSLH272);沈阳市中青年科技创新人才计划(RC210195);沈阳化工大学-国家科学基金优秀青年学者培养项目(2022YQ001)
通讯作者: 李东翰,教授,lidonghansyuct@126.com,研究方向为反应型高含氟低聚物的合成、官能化及其结构和性能
Corresponding author: LI Donghan, Tel: 15904024628, E-mail: lidonghansyuct@126.com
作者简介: 姜 帆,男,1999年生,硕士生
Temperature / oCMn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
1025101.881.940.26
2024601.932.230.18
3024101.922.250.10
4024301.922.230.12
5024501.922.220.13
6023802.052.210.11
表1  反应温度对产物结构的影响
Time / hMn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
225101.882.380.26
424701.932.330.18
624801.952.300.14
824301.932.270.12
1024101.922.250.10
1224502.112.120.10
表2  反应时间对产物结构的影响
[Selectfluor]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
1.0:1.024301.882.380.14
2.0:1.024101.852.300.08
3.0:1.024201.902.300.11
4.0:1.024901.952.270.13
5.0:1.024401.922.230.11
表3  Selectfluor用量对产物结构的影响
[TBAF]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
0.5:1.024201.822.360.12
1.0:1.024101.852.300.08
1.5:1.023801.932.110.11
2.0:1.024202.011.980.13
2.5:1.024802.401.860.13
表4  TBAF用量对产物结构的影响
[NBS]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
0.5/1.024101.852.300.08
1.0/1.024201.822.230.11
1.5/1.023001.932.200.14
2.0/1.024401.882.090.12
2.5/1.024902.072.020.13
表5  NBS用量对产物结构的影响
图1  CTLF和SCTLF的FT-IR谱
图2  CTLF和SCTLF的1H-NMR谱
图3  CTLF和SCTLF的19F-NMR谱
No.δ / × 10-6Assignment
a-63.46-CF2C F2COOH
b-70.67-CH2CF2CF(C F3)CF2CH2-
c-73.71-CF2CH=C(C F3)CF2-
d-75.19-CF2CH2CF(C F3)CF2CF2-
e-80.66-CH=CFCF(C F3)-
f-81.30-CF=CHCF(C F3)CF2-
g-91.62-CF2CH2C F2CH2CF2-
h-93.56-CF2CH2C F2CH2CF(CF3)-
i-95.64-CH2CH2C F2CH2CF2-
j-103.62-CF2CH2C F2CF(CF3)CF2-
k-108.96-CF(CF3)CH2C F2CF(CF3)CF2-
l-110.51-CF2CH2C F2CF2CF(CF3)-
m-112.53-CF(CF3)CH2C F2CF2CH2-
n-113.95-CF2CH2C F2CF2CH2-
o-116.24-CH2CH2C F2CF2CF(CF3)-
p-118.72-CH2CF2C F2CF(CF3)CH2-
表6  CTLF和SCTF中19F-NMR谱中特征峰的归属
图4  CTLF和SCTLF的GPC谱
TypeMn¯PDI
CTLF26201.80
SCTLF24101.85
表7  CTLF和SCTLF的分子量和分子量分布
图5  氟化加成反应的机理
图6  CTLF和SCTLF的DSC曲线
图7  CTLF和SCTLF的TGA和DTG谱
图8  CTLF和SCTLF的动力粘度
图9  SCTLF、HDI三聚体以及固化产物的FT-IR谱
图10  SCTLF的固化机理
图11  CTLF固化产物和SCTLF固化产物的力学性能
图12  CTLF固化产物和SCTLF固化产物的耐航空煤油和耐酸碱性能
1 Yang C, Li D H, Li P, et al. Synthesis and properties of the novel high-performance 2 hydroxyl-terminated liquid fluoroelastomer [J]. Polymers, 2023, 15(1): 2574
2 Chang Y F, Liao M Y, Li X Y. Reduction of liquid terminated-carboxyl fluoroelastomers using NaBH4/SmCl3 [J]. RSC Adv., 2020, 10(18): 10932
3 Abdelhamid M I, Aboelwafa A M, Elhadidy H, et al. Investigation of the structure and piezoelectricity of poly (vinylidene fluoride-trifluroethylene) copolymer doped with different dyes [J]. Int. J. Polym. Mater. Polym. Biomater., 2012, 61(7): 505
4 Yu H W, Zhang R, Rong Y, et al. Structure and thermal stability of fluororubber [J]. Special Purpose Rubber Products, 2020, 41(5): 59
4 于宏伟, 张 蕊, 戎 媛 等. 氟橡胶结构及热稳定性研究 [J]. 特种橡胶制品, 2020, 41(5): 59
5 Lee P C, Kim S Y, Ko Y K, et al. Durability and service life prediction of fluorocarbon elastomer under thermal environments [J]. Polymers, 2022, 14(10): 2047
6 Destarac M, Matyjaszewski K, Silverman E, et al. Atom transfer radical polymerization initiated with vinylidene fluoride telomers [J]. Macromolecules, 2000, 33(13): 4613
7 Mitra S, Ghanbari‐Siahkali A, Kingshott P, et al. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment [J]. J. Polym. Sci. A Polym. Chem., 2004, 42(24): 6216
8 Saint-Loup R, Ameduri B. Photochemical induced polymerization of vinylidene fluoride (VDF) with hydrogen peroxide to obtain original telechelic PVDF [J]. J. Fluorine Chem., 2002, 116(1): 27
9 Hu Z K, Finlay J A, Chen L, et al. Photochemically cross-linked perfluoropolyether-based elastomers: synthesis, physical characterization, and biofouling evaluation [J]. Macromolecules, 2009, 42(18): 6999
10 Sawada H, Tashima T, Nishiyama Y, et al. Iodine transfer terpolymerization of vinylidene fluoride, α-trifluoromethacrylic acid and hexafluoropropylene for exceptional thermostable fluoropolymers/silica nanocomposites [J]. Macromolecules, 2011, 44(5): 1114
11 Li D H, Liao M Y. Study on the dehydrofluorination of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) copolymer [J]. Polym. Degrad. Stabil., 2018, 152: 116
12 Li D H. Preparation, curing, structures and properties of end-functionalized liquid fluoroelastomers [D]. Dalian: Dalian Maritime University, 2018
12 李东翰. 液体端基官能化氟橡胶的制备, 固化及其结构和性能研究 [D]. 大连: 大连海事大学, 2018
13 Li D H, Liao M Y. Preparation of telechelic hydroxyl low molecular weight fluoropolymers [J]. Key Eng. Mater., 2017, 753: 93
14 Liao M Y, Li D H. Preparation of low molecular weight fluoropolymer with hydroxyl end by borohydride/rare earth chloride reduction system [P]. China, CN107674133B, 2019
14 廖明义, 李东翰. 硼氢化物/稀土元素氯化物还原体系制备端羟基低分子量含氟聚合物的方法 [P]. 中国, CN107674133B, 2019
15 Scattolin T, Bouayad-Gervais S, Schoenebeck F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas [J]. Nature, 2019, 573(7772): 102
16 Liu Y Y, Zhao Y X, Chen Y F, et al. Research progress of fluorinated reagents and application of selectfluor (F-TEDA-BF4) in organic synthesis [J]. Organo-Fluorine Industry, 2018, (3): 54
16 刘园园, 赵翊晓, 陈焱锋 等. 氟化试剂的研究进展及Selectfluor在有机合成中的应用 [J]. 有机氟工业, 2018, (3): 54
17 Yang K, Song M, Ali A I M, et al. Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis [J]. Chem. Asian J., 2020, 15(6): 729
18 Burkart M D, Zhang Z, Hung S C, et al. A new method for the synthesis of fluoro-carbohydrates and glycosides using selectfluor [J]. J. Am. Chem. Soc., 1997, 119(49): 11743
19 Ishimaru T, Shibata N, Reddy D S, et al. DBFOX-Ph/metal complexes: Evaluation as catalysts for enantioselective fluorination of 3-(2-arylacetyl)-2-thiazolidinones [J]. Beilstein. J. Org. Chem., 2008, 4(1): 16
20 Sun H, DiMagno S G. Anhydrous tetrabutylammonium fluoride [J]. J. Am. Chem. Soc., 2005, 127(7): 2050
pmid: 15713075
21 Kaburagi Y, Kishi Y. Operationally simple and efficient workup procedure for TBAF-mediated desilylation: application to halichondrin synthesis [J]. Org. Lett., 2007, 9(4): 723
pmid: 17286380
22 Li L, Zhang G, Zhu A, et al. A convenient preparation of 5-iodo-1, 4-disubstituted-1, 2, 3-triazole: Multicomponent one-pot Reaction of azide and alkyne mediated by CuI-NBS [J]. J. Org. Chem., 2008, 73(9): 3630
23 Duan J, Yang C, Kang H, et al. Structure, preparation and properties of liquid fluoroelastomers with different end groups [J]. RSC Adv., 2022, 12(5): 3108
doi: 10.1039/d1ra07810k pmid: 35425283
24 Silverstein R M, Bassler G C. Spectrometric identification of organic compounds [J]. J. Chem. Educ., 1962, 39(11): 546
25 Li D H. Dehydrofluorination mechanisms and structures of fluoroelastomers in alkaline environments [J]. J. Fluorine Chem., 2018, 32: 1730
26 Souzy R, Ameduri B, von Ahsen S, et al. Use of bis (trifluoromethyl) peroxy dicarbonate as initiator in the radical homopolymerisation of vinylidene fluoride (VDF) and copolymerisation of VDF with hexafluoropropylene [J]. J. Fluorine Chem., 2003, 123(1): 85
27 Taguet A, Sauguet L, Ameduri B, et al. Fluorinated cotelomers based on vinylidene fluoride (VDF) and hexafluoropropene (HFP): Synthesis, dehydrofluorination and grafting by amine containing an aromatic ring [J]. J. Fluorine Chem., 2007, 128(6): 619
28 Yang Z Y. Addition reaction of halogens to vinyl (pentafluorocyclopropanes): Competition between a radical addition and an electrophilic addition [J]. J. Org. Chem., 2003, 68(13): 5419
29 Cheburkov Y, Moore G G I. 2, 2-Dihydroperfluoropentane (HFC 4310 mf) synthesis from HFP dimer [J]. J. Fluorine Chem., 2003, 123(2): 227
30 Talavera M, Meißner G, Rachor S G, et al. C-F activation reactions at germylium ions: dehydrofluorination of fluoralkanes [J]. Chem. Commun., 2020, 56(32): 4452
31 Souzy R, Boutevin B, Ameduri B. Synthesis and characterizations of novel proton-conducting fluoropolymer electrolyte membranes based on poly (vinylidene fluoride-ter-hexafluoropropylene-ter-α-trifluoromethacrylic acid) terpolymers grafted by aryl sulfonic acids [J]. Macromolecules, 2012, 45(7): 3145
[1] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] 赵浩成, 姚志广, 尤雪瑞, 赵丽芝. 聚氨酯基复合弹性体阳极键合阴极材料的性能[J]. 材料研究学报, 2025, 39(1): 63-70.
[3] 周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
[4] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] 敖霜霜, 徐嘉晨, 王宇作, 阮殿波, 乔志军. 聚乳酸基硬碳的制备及其电化学性能研究[J]. 材料研究学报, 2024, 38(11): 811-820.
[6] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[7] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[11] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[12] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[13] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[14] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[15] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.