Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (2): 103-112    DOI: 10.11901/1005.3093.2024.276
  研究论文 本期目录 | 过刊浏览 |
低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能
朱国豪, 陈平(), 徐计雷, 孙慧敏
大连理工大学化工学院 精细化工全国重点实验室 大连 116024
Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide
ZHU Guohao, CHEN Ping(), XU Jilei, SUN Huimin
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
Guohao ZHU, Ping CHEN, Jilei XU, Huimin SUN. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. Chinese Journal of Materials Research, 2025, 39(2): 103-112.

全文: PDF(7585 KB)   HTML
摘要: 

设计并合成一种具有Cardo结构、柔性硅氧烷和苯乙炔封端的低聚聚酰亚胺(SPI),将其以不同比例混入聚酰亚胺(PI)中制备出低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)。将SPI改性的PI固化,制备出SPI改性的PI固化物,其玻璃化转变温度(Tg)从PI基体的382 ℃提高到459 ℃;拉伸强度从96.25 MPa提高到128.96 MPa,拉伸模量从1.83 GPa提高到2.41 GPa。改性 PI固化物的热稳定性和力学性能优异,因为在改性固化的热交联过程中形成的半互穿聚合物网络结构(semi-IPNs)和硅氧烷结构间产生了协同效应。

关键词 有机高分子材料聚酰亚胺热交联semi-IPNs结构热稳定性力学性能    
Abstract

A novel oligomeric polyimide (SPI) incorporated with Cardo structures, flexible siloxane bonds, and phenylethynyl terminations was designed and synthesized. Then, the prepared SPI was blended with polyimide (PI) matrix in different proportions to produced SPI modified PI polymer. Upon curing, the SPI modified PI polymer exhibited significant improvements in thermal and mechanical properties. The glass transition temperature (Tg) of the cured blends increased from 382 oC for the PI matrix to 459 oC. Correspondingly, the tensile strength and tensile modulus were improved from 96.25 MPa and 1.83 GPa to 128.96 MPa and 2.41 GPa respectively. The enhanced thermal stability and mechanical performance of the modified PI may be attributed to the synergistic effects between the siloxane structures with the semi-interpenetrating polymer network (semi-IPNs) formed during the thermal crosslinking process.

Key wordsorganic polymer materials    polyimide    thermal -crosslinking    semi-IPNs    thermal stability    mechanical property
收稿日期: 2024-06-15     
ZTFLH:  TB324  
基金资助:兴辽英才计划(XLYC1802085);国家自然科学基金(51873109);大连市科技创新基金重大项目(2019J11CY007)
通讯作者: 陈 平,教授,pchen@dlut.edu.cn,研究方向为高性能高分子材料与先进聚合物基复合材料与功能一体化设计与制备
Corresponding author: CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn
作者简介: 朱国豪,男,1999年生,硕士
图1  SPI、PI的合成路线和固化SPI改性PI聚合物薄膜的照片
图2  二硝基化合物BNFPS和二胺基化合物APFPS的红外光谱和APFPS的核磁谱
图3  SPI的红外谱和1H NMR谱
图4  未固化SPI改性PI聚合物薄膜的红外谱、2100~2300 cm-1范围苯乙炔基团的红外谱和固化后SPI改性PI聚合物薄膜的红外谱
图5  SPI、未固化和固化的SPI改性PI聚合物薄膜的广角X射线衍射谱
图6  未固化SPI改性PI聚合物薄膜的DSC曲线和Tg与组成的关系
SampleExperimentalAdditivity lawFOX eq.Pochan eq.
SPI/PI-0382382382382
SPI/PI-5373371358344
SPI/PI-10334360336313
SPI/PI-15325349318287
表1  未固化的SPI改性PI聚合物薄膜的Tg测试值与理论计算结果
图7  热固化过程
图8  固化SPI改性PI聚合物薄膜的DSC、DMA、TGA和DTG曲线
SampleDSCDMATGA
TgTgTd5%Td10%TmaxRw
SPI/PI-0382.03-556.23579.23580.6572.12
SPI/PI-5428.25430.61555.69577.16581.4875.21
SPI/PI-10440.89456.86547.01572.19584.4074.04
SPI/PI-15435.08459.80534.42565.14585.8172.94
表2  固化后SPI改性PI聚合物薄膜的热性能
SampleTensile strength / MPaElastic modulus / GPaElongation at break / %
SPI/PI-096.251.835.47
SPI/PI-5113.751.959.95
SPI/PI-10128.962.219.57
SPI/PI-15115.022.418.17
表3  SPI改性PI固化聚合物薄膜的力学性能
图9  固化SPI改性PI聚合物薄膜的SEM照片
图10  固化SPI改性PI聚合物薄膜的水接触角
1 Ma P C, Dai C T, Wang H Z, et al. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites [J]. Compos. Commun., 2019, 16: 84
2 Liu X J, Zheng M S, Chen G, et al. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties [J]. Energy Environ. Sci., 2022, 15(1): 56
3 Qian G T, Chen H Q, Song G L, et al. Superheat-resistant polyimides with ultra-low coefficients of thermal expansion [J]. Polymer, 2020, 196: 122482
4 Lian M, Lu X M, Lu Q H. Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction [J]. Macromolecules, 2018, 51(24): 10127
5 Cooper S L, Mair A D, Tobolsky A V. A study of the mechanical behavior of polyimides [J]. Text. Res. J., 1965, 35(12): 1110
6 Tian Y, Luo Y F, Meng H C, et al. Fabrication of lightweight polyimide foams with exceptional mechanical and thermal properties [J]. Macromol. Rapid Commun., 2023, 44(21): 2300357
7 Li Q, Chen R H, Guo Y J, et al. Fluorinated linear copolyimide physically crosslinked with novel fluorinated hyperbranched polyimide containing large space volumes for enhanced mechanical properties and UV-shielding application [J]. Polymers, 2020, 12(1): 88
8 Jiang S H, Cheong J Y, Nam J S, et al. High-density fibrous polyimide sponges with superior mechanical and thermal properties [J]. ACS Appl. Mater. Interfaces, 2020, 12(16): 19006
9 Li Y H, Sun G H, Zhou Y, et al. Progress in low dielectric polyimide film-A review [J]. Prog. Org. Coat., 2022, 172: 107103
10 Peng W F, Lei H Y, Qiu L H, et al. Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss [J]. Polym. Chem., 2022, 13(26): 3949
11 Bei R X, Qian C, Zhang Y, et al. Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties [J]. J. Mater. Chem., 2017, 5C(48): 12807
12 Fan H, Xie T T, Wang C, et al. Low-dielectric polyimide constructed by integrated strategy containing main-chain and crosslinking network engineering [J]. Polymer, 2023, 279: 126035
13 Chen Z G, Zhou Y B, Wu Y C, et al. Fluorinated polyimide with polyhedral oligomeric silsesquioxane aggregates: toward low dielectric constant and high toughness [J]. Compos. Sci. Technol., 2019, 181: 107700
14 Connell J W, Smith Jr J G, Hergenrother P M, et al. Neat resin, adhesive and composite properties of reactive additive/PETI-5 blends [J]. High Perform. Polym., 2000, 12(2): 323
15 Yu P, Xue M Z, Liu Y G, et al. Effect of blending modifications for phenylethynyl-terminated polyimides [J]. Fibers Polym., 2020, 21: 282
16 Li X T, Zhang P Y, Dong J, et al. Preparation of low-κ polyimide resin with outstanding stability of dielectric properties versus temperature by adding a reactive Cardo-containing diluent [J]. Compos., 2019, 177B: 107401
17 Chen W, Ji M, Yang S Y. High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities [J]. Chin. J. Polym. Sci., 2016, 34: 933
18 Yu P, Wang Y, Yu J R, et al. Development of novel cardo-containing phenylethynyl-terminated polyimide with high thermal properties [J]. Polym. Adv. Technol., 2017, 28(2): 222
19 Qu C H, Li X, Yang Z H, et al. Damping, thermal, and mechanical performances of a novel semi-interpenetrating polymer networks based on polyimide/epoxy [J]. J. Appl. Polym. Sci., 2019, 136(41): 48032
20 Tang H, Dong L S, Feng Z L. Polyimide and its blends [J]. Chin. J. Master. Res., 1996, 10(5): 449
20 汤 浩, 董丽松, 冯之榴. 聚酰亚胺及其共混物 [J]. 材料研究学报, 1996, 10(5): 449
21 Pan H Y, Pu H T, Jin M, et al. Semi-interpenetrating polymer networks of Nafion® and fluorine-containing polyimide with crosslinkable vinyl group [J]. Polymer, 2010, 51(11): 2305
22 Harris F W, Pamidimukkala A, Gupta R, et al. Synthesis and characterization of reactive end-capped poiymide oligomers [J]. J. Macromol. Sci., 1984, 21A(8-9): 1117
23 Cano R J, Jensen B J. Effect of molecular weight on processing and adhesive properties of the phenylethynyl-terminated polyimide LARC™-PETI-5 [J]. J. Adhes., 1997, 60(1-4): 113
24 Hergenrother P M, Connell J W, Smith Jr J G. Phenylethynyl containing imide oligomers [J]. Polymer, 2000, 41(13): 5073.
25 Smith Jr J G, Connell J W, Hergenrother P M, et al. High temperature transfer molding resins-II [A]. SAMPE Symposium and Exhibition [C]. California, 2001
26 Smith Jr J G, Connell J W, Hergenrother P M, et al. High temperature transfer molding resins based on 2,3,3',4'-biphenyltetracarboxylic dianhydride[A]. 47th International SAMPE Symposium and Exhibition[C]. Long Beach: NTRS, 2002
27 Chen W Y, Ho K S, Hsieh T H, et al. Simultaneous preparation of PI/POSS semi-IPN nanocomposites [J]. Macromol. Rapid Commun., 2006, 27(6): 452
28 Zhou D R, Yuan L L, Hong W J, et al. Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix [J]. Polymer, 2019, 173: 66
29 Johnston N J, Srinivasan K, Peter R H. Toughening of PMR composites by gradient semi-interpenetrating networks [A]. 37th International SAMPE Symposium and Exhibition [C]. Anaheim: Society for the Advancement of Material and Process Engineering, 1992
30 Ke H J, Zhao L W, Zhang X H, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide [J]. Polym. Test., 2020, 90: 106746
31 Wood L A. Glass transition temperatures of copolymers [J]. J. Polym. Sci., 1958, 28(117): 319
32 Fox T G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system [J]. Bull. Am. Phys. Soc., 1956, 1: 123
33 Pochan J M, Beatty C L, Pochan D F. Different approach for the correlation of the Tg of mixed amorphous systems [J]. Polymer, 1979, 20(7): 879
34 Fang X M, Xie X Q, Simone C D, et al. A solid-state 13C NMR study of the cure of 13C-labeled phenylethynyl end-capped polyimides [J]. Macromolecules, 2000, 33(5): 1671
35 Fang X M, Rogers D F, Scola D A, et al. A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5) [J]. J. Polym. Sci., 1998, 36A(3): 461.
36 Fang X M, Hutcheon R, Scola D A. A study of the kinetics of the microwave cure of a phenylethynyl-terminated imide model compound and imide oligomer (PETI-5) [J]. J. Polym. Sci., 2000, 38A(14): 2526
37 Holland T V, Glass T E, McGrath J E. Investigation of the thermal curing chemistry of the phenylethynyl group using a model aryl ether imide [J]. Polymer, 2000, 41(13): 4965
38 Affolter S, Ritter A, Schmid M. Interlaboratory tests on polymers by differential scanning calorimetry (DSC): determination of glass transition temperature (Tg) [J]. Macromol. Mater. Eng., 2001, 286(10): 605
39 Ronova I A, Bruma M. Influence of chemical structure on glass transition temperature of polyimides [J]. Struct. Chem., 2010, 21: 1013
40 Grzybowski A. Glass transition and related phenomena [J]. Int. J. Mol. Sci., 2023, 24(10): 8685
41 Chen Z G, Zhang S, Feng Q, et al. Improvement in mechanical and thermal properties of transparent semi-aromatic polyimide by crosslinking [J]. Macromol. Chem. Phys., 2020, 221(12): 2000085
42 Yuan L L, Ji M, Yang S Y. Molecular weight controlled poly(amic acid) resins end-capped with phenylethynyl groups for manufacturing advanced polyimide films [J]. J. Appl. Polym. Sci., 2017, 134(43): 45168
43 Chang K Y, Chang H M, Lee Y D. Molecular composite. II. Novel block copolymer and semi-interpenetrating polymer network of rigid polyamide and flexible polyimide [J]. J. Polym. Sci., 1994, 32A(14): 2629
44 Jang B Z, Pater R H, Soucek M D, et al. Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks [J]. J. Polym. Sci., 1992, 30B(7): 643
45 Li Q, Liao G F, Tian J, et al. Preparation of novel fluorinated copolyimide/amine-functionalized sepia eumelanin nanocomposites with enhanced mechanical, thermal, and UV-shielding properties [J]. Macromol. Mater. Eng., 2018, 303(2): 1700407
46 Liu J F, Fan W F, Lu G W, et al. Semi-interpenetrating polymer networks based on cyanate ester and highly soluble thermoplastic polyimide [J]. Polymers, 2019, 11(5): 862
47 Wohl C J, Belcher M A, Chen L, et al. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces [J]. Langmuir, 2010, 26(13): 11469
doi: 10.1021/la100958r pmid: 20446721
48 Xiong L, Wang X L, Qi H X, et al. Synthesis of a new siloxane-containing alicyclic dianhydride and the derived polyimides with improved solubility and hydrophobicity [J]. J. Appl. Polym. Sci., 2013, 127(3): 1493
49 Liu N, Wei K, Wang L, et al. Organic-inorganic polyimides with double decker silsesquioxane in the main chains [J]. Polym. Chem., 2016, 7(5): 1158
[1] 符纯国 徐世伟 杨晓益 李萌蘖. 焊接热源模式对5083-H111铝合金接头组织与性能的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[3] 姜帆, 李琬桐, 赵树发, 石宁, 张梦霞, 方庆红, 李东翰. 高性能液体端羧基氟橡胶的氟化加成反应合成[J]. 材料研究学报, 2025, 39(1): 11-20.
[4] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[5] 赵浩成, 姚志广, 尤雪瑞, 赵丽芝. 聚氨酯基复合弹性体阳极键合阴极材料的性能[J]. 材料研究学报, 2025, 39(1): 63-70.
[6] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[7] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[8] 周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
[9] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[10] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[11] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[12] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[13] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[14] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[15] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.