Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 585-592    DOI: 10.11901/1005.3093.2024.033
  研究论文 本期目录 | 过刊浏览 |
DA-PEI共沉积表面改性阳离子交换膜的制备
周键1,2(), 夏蒙玥1,2, 张航飞1,2, 刘俏君1,2
1.兰州交通大学环境与市政工程学院 兰州 730070
2.寒旱地区水资源综合利用教育部工程研究中心 兰州 730070
Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane
ZHOU Jian1,2(), XIA Mengyue1,2, ZHANG Hangfei1,2, LIU Qiaojun1,2
1.College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China
引用本文:

周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
Jian ZHOU, Mengyue XIA, Hangfei ZHANG, Qiaojun LIU. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. Chinese Journal of Materials Research, 2024, 38(8): 585-592.

全文: PDF(21205 KB)   HTML
摘要: 

基于贻贝仿生粘合剂多巴胺(Dopamine,DA)和聚乙烯亚胺(Polyethyleneimine,PEI)共沉积制备了阳离子交换膜并使用红外光谱仪、扫描电子显微镜和紫外可见分光光度计等手段表征其性能,研究了DA与PEI浓度比对改性膜性能的影响。结果表明,随着PEI浓度的提高改性膜的选择透过性和膜电阻呈先增加后降低趋势,而改性膜的氧化百分比呈先下降后提高的趋势。DA与PEI浓度比为1∶1的改性膜其氧化百分比和膜电阻较低,含水率和离子交换容量分别为48.68%和2.49 mmol/g,选择透过性高达97.8%,比原膜提高了8.08%。

关键词 有机高分子材料离子交换膜共沉积高选择透过性    
Abstract

The cation exchange membrane was prepared by co-deposition of Dopamine (DA) and Polyethyleneimine (PEI) based on mussel bionic binders, and its properties were characterized by infrared spectrometer, scanning electron microscope, and UV visible spectrophotometer. The effect of DA to PEI concentration ratio on the performance of the modified membrane was studied. The results showed that with the increase of PEI concentration, the selective permeability and membrane resistance increased first and then decreased, while the oxidation percentage of the modified membrane decreased first and then increased. When the concentration ratio of DA to PEI was 1:1, the modified membrane had lower oxidation percentage and membrane resistance. Accordingly, the water content and ion exchange capacity were 48.68% and 2.49 mmol/g, respectively, and the selective permeability was up to 97.8%, that is 8.08% superior to the original membrane.

Key wordsorganic polymer materials    ion exchange membrane    co-deposition    high selective permeability
收稿日期: 2024-01-11     
ZTFLH:  TQ028  
基金资助:国家自然科学基金(52364055);甘肃省教育厅:高校科研创新平台重大培育项目(2024CXPT-14);兰州交通大学“天佑青年托举人才计划”基金
通讯作者: 周键,副教授,zhoujian@mail.lzjtu.cn,研究方向为水处理功能材料制备
Corresponding author: ZHOU Jian, Tel: (0931)4956083, E-mail: zhoujian@mail.lzjtu.cn
作者简介: 周 键,男,1984年生,博士
Membrane typeThickness / mmMoisture content / %Ion exchange capacity / mol·kg-1Selective permeability / %Membrane resistance / Ω·cm2
IONSEP-MC-C0.42< 40> 2.4> 92< 10
表1  商用阳膜的性能参数
图1  测试装置的等效图
图2  在不同条件下DA的紫外-可见光谱
图3  不同DA与PEI浓度比溶液的紫外-可见光谱
图4  DA-PEI共沉积反应的原理图
图5  不同DA与PEI浓度比对改性膜含水率和离子交换容量的影响
图6  DA与PEI浓度比对改性膜迁移数和选择透过性的影响
图7  DA与PEI浓度比对改性膜抗氧化性和膜电阻的影响
图8  原膜和不同浓度比的改性膜的SEM照片
CON
M095.04.80
M194.75.00.2
M293.76.00.3
M392.96.40.6
M490.77.40.8
M594.35.40.3
表2  原膜和改性膜表面元素的含量
图9  原膜和改性膜的EDS元素面扫描图
图10  原膜和不同DA与PEI浓度比的改性膜的红外光谱
1 Dong S. Preparation of NASICON-structured NaTi2(PO4)3 material and device assembly and reduction/recovery of trace reducible metal ions in water [D]. Jinan: Shandong University, 2021
1 董 顺. NASICON型NaTi2(PO4)3材料的制备、器件组装及其对水体中微量可还原金属离子的还原回收 [D]. 济南: 山东大学, 2021
2 Campione A, Cipollina A, Bogle I D L, et al. A hierarchical model for novel schemes of electrodialysis desalination [J]. Desalination, 2019, 465: 79
doi: 10.1016/j.desal.2019.04.020
3 Zhou J, Wang S F, Song X S. Electrodeposition of cobalt in double-membrane three-compartment electrolytic reactor [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(6): 1706
4 Zhou J, Wang S F, Song X S, et al. Ion transport for electrodeposition of cobalt in double-membrane three-compartment electrolytic cell [J]. Chin. J. Nonferrous Met., 2016, 26(11): 2426
4 周 键, 王三反, 宋小三 等. 双膜三室电解槽中电沉积钴的离子传输 [J]. 中国有色金属学报, 2016, 26(11): 2426
5 Rana D, Matsuura T. Surface modifications for antifouling membranes [J]. Chem. Rev., 2010, 110(4): 2448
doi: 10.1021/cr800208y pmid: 20095575
6 Bao L R, Xu Z G, Guo W, et al. Enhancement of lithium extraction from low grade brines by highly hydrophilic blend membranes using MnO2 ion sieve as adsorbents [J]. Colloids Surf., 2023, 674A: 131884
7 Mu Y X, Wang S F, Wang T, et al. Progress in the modification of ion-exchange membranes [J]. Membr. Sci. Technol., 2013, 33(6): 119
7 穆永信, 王三反, 王 挺 等. 离子交换膜改性的研究进展 [J]. 膜科学与技术, 2013, 33(6): 119
8 Li J, Xu Y Q, Ruan H M, et al. Monovalent cation selective membranes: state and development perspective [J]. Membr. Sci. Tech., 2015, 35(3): 113
8 李 健, 徐燕青, 阮慧敏 等. 单价选择性阳离子交换膜的研究进展 [J]. 膜科学与技术, 2015, 35(3): 113
9 Khoiruddin, Ariono D, Subagjo, et al. Surface modification of ion-exchange membranes: methods, characteristics, and performan-ce [J]. J. Appl. Polym. Sci., 2017, 134(48): 45540
10 Li B, Liu W P, Jiang Z Y, et al. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine) [J]. Langmuir, 2009, 25(13): 7368
doi: 10.1021/la900262p pmid: 19366196
11 Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426
doi: 10.1126/science.1147241 pmid: 17947576
12 Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution [J]. Langmuir, 2011, 27(6): 2819
doi: 10.1021/la104981s pmid: 21332218
13 Guo B B, Zhu C Y, Xu Z K. Surface and interface engineering for advanced nanofiltration membranes [J]. Chin. J. Polym. Sci., 2022, 40(2): 124
14 Zhao W R, Zhang W, Liu Y, et al. Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication [J]. Sep. Purif. Technol., 2022, 300: 121802
15 Wang Z, Zhang W J, Wen S, et al. Rapid co-deposition of dopamine and polyethyleneimine triggered by CuSO4/H2O2 oxidation to fabricate nanofiltration membranes with high selectivity and antifouling ability [J]. Sep. Purif. Technol., 2023, 305: 122409
16 Wei Q, Zhang F L, Li J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings [J]. Polym. Chem., 2010, 1(9): 1430
17 Du X, Li L X, Li J S, et al. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning [J]. Adv. Mater., 2014, 26(47): 8029
18 Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation [J]. J. Mater. Chem., 2014, 2A(26) : 10225
19 Wang J, Zhu J Y, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine [J]. J. Mater. Chem., 2017, 5A(28) : 14847
20 Cao R Q, Duan F, Xu Y, et al. Composite modification of anion exchange membrane by in-situ layer-by-layer assembly to improve antifouling performance [J]. J. Membr. Sci., 2024, 690: 122211
21 Chen R Y, Chen Z, Zheng X, et al. Preparation and characterization of CoPc(COOH)8-SA/mCS bipolar membranes [J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2438
21 陈日耀, 陈 震, 郑 曦 等. CoPc(COOH)8-SA/mCS双极膜的制备及表征 [J]. 物理化学学报, 2009, 25(12): 2438
22 Galama A H, Hoog N A, Yntema D R. Method for determining ion exchange membrane resistance for electrodialysis systems [J]. Desalination, 2016, 380: 1
23 Zhang X M. Preparation, characterization and application of cation exchange membranes based sulfonated PVDF [D]. Lanzhou: Lanzhou Jiaotong University, 2019
23 张学敏. PVDF磺化阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2019
24 Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2- induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability [J]. Angew. Chem. Int. Ed., 2016, 55(9): 3054
doi: 10.1002/anie.201510724 pmid: 26822393
25 Zhao W R, Liu Y, Zhang W, et al. Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication [J]. Chem. Ind. Eng. Prog., 2022, 42(3): 1508
25 赵王瑞, 刘 燕, 张 伟 等. Fe3+诱导聚多巴胺-聚乙烯亚胺电沉积制备单价选择性膜 [J]. 化工进展, 2022, 42(3): 1508
26 Wang Z, Xie Y J, Li Y W, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry [J]. Chem. Mater., 2017, 29(19): 8195
27 Charkoudian L K, Franz K J. Fe(III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid [J]. Inorg. Chem., 2006, 45(9): 3657
pmid: 16634598
28 Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition [J]. J. Membr. Sci., 2013, 431: 113
29 Chen Z H. Study on the modification and properties of polyethylene anion exchange membrane [D]. Lanzhou: Lanzhou Jiaotong University, 2021
29 陈志华. 聚乙烯阴离子交换膜的改性及性能研究 [D]. 兰州: 兰州交通大学, 2021
30 Ball V, Gracio J, Vila M, et al. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants [J]. Langmuir, 2013, 29(41): 12754
31 Li Y H. Preparation, characterization and application of organic-inorganic hybrid SiO2 cation exchange membranes [D]. Lanzhou: Lanzhou Jiaotong University, 2020
31 李艳红. 有机-无机杂化SiO2阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2020
32 Jiang J H, Zhu L P, Zhu L J, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films [J]. Langmuir, 2011, 27(23): 14180
doi: 10.1021/la202877k pmid: 22011109
33 Zhang N, Jiang B, Zhang L H, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation [J]. Chem. Eng. J., 2019, 359: 1442
doi: 10.1016/j.cej.2018.11.033
34 Ma Z. Study on intelligent modification of membrane surface based on membrane cleaning response [D]. Tianjin: Tianjin Polytechnic University, 2018
34 马 忠. 基于膜清洗响应的膜表面智能改性研究 [D]. 天津: 天津工业大学, 2018
35 He A, Zhang C, Lv Y, et al. Mussel-inspired coatings directed and accelerated by an electric field [J]. Macromol. Rapid Commun., 2016, 37(17): 1460
36 Mao C C, Wang X, Zhang W, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance [J]. Colloids Surf., 2021, 614A: 126136
37 Almeida L C, Frade T, Correia R D, et al. Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces [J]. Sci. Rep., 2021, 11(1): 2237
doi: 10.1038/s41598-021-81816-1 pmid: 33500469
38 Lv Y, Yang H C, Liang H Q, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking [J]. J. Membr. Sci., 2015, 476: 50
[1] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[2] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[3] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.