|
|
鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能 |
周慧1, 杜彬1, 杨鹏斌1, 金党琴1, 肖伽励1, 沈明2( ), 王升文1 |
1.扬州工业职业技术学院化学工程学院 扬州 225127 2.扬州大学化学化工学院 扬州 225002 |
|
Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities |
ZHOU Hui1, DU Bin1, YANG Pengbin1, JIN Dangqin1, XIAO Jiali1, SHEN Ming2( ), WANG Shengwen1 |
1.School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China 2.College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China |
引用本文:
周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
Hui ZHOU,
Bin DU,
Pengbin YANG,
Dangqin JIN,
Jiali XIAO,
Ming SHEN,
Shengwen WANG.
Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. Chinese Journal of Materials Research, 2024, 38(7): 549-560.
[1] |
Li Y H, Zhang J W, Chen L J, et al. Construction of flower-like Zn2+/BiOBr with enhanced visible photocatalytic activity for the degradation of levofloxacin [J]. Inorg. Chem. Commun., 2023, 148: 110277
|
[2] |
Kovalakova P, Cizmas L, McDonald T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351
|
[3] |
Li T Z, Ouyang W, Lin C Y, et al. Occurrence, distribution, and potential ecological risks of antibiotics in a seasonal freeze-thaw basin [J]. J. Hazard. Mater., 2023, 459: 132301
|
[4] |
Hanna N, Tamhankar A J, Lundborg C S. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment [J]. Lancet Planet. Health, 2023, 7(1): e45
doi: 10.1016/S2542-5196(22)00254-6
pmid: 36608948
|
[5] |
Pons M J, Mosquito S, Gomes C, et al. Analysis of quinolone-resistance in commensal and diarrheagenic Escherichia coli isolates from infants in Lima, Peru [J]. Trans. Roy. Soc. Trop. Med. Hyg., 2014, 108(1): 22
|
[6] |
Choudhary K, Saini R, Purohit L P. Controllable synthesis of Ce-doped ZnO: TiO2 nanospheres for photocatalytic degradation of MB dye and levofloxacin under sunlight light irradiation [J]. Opt. Mater., 2023, 143: 114167
|
[7] |
Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnO x microspheres [J]. Chem. Eng. J., 2020, 379: 122340
|
[8] |
Luo Y Y, Liu C, Wang Y, et al. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: A review [J]. Mar. Pollut. Bull., 2023, 193: 115189
|
[9] |
Estofan L J F, Naydin S, Gliebus G. Quinolone-induced painful peripheral neuropathy: a case report and literature review [J]. J. Invest. Med. High Impact Case Rep., 2018, 6: 1
|
[10] |
Gupta G, Kansal S K. Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase [J]. Process Saf. Environ. Prot., 2019, 128: 342
|
[11] |
Guo W Q, Guo T, Zhang Y Z, et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review [J]. Chemosphere, 2023, 339: 139486
|
[12] |
Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
|
[12] |
任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
|
[13] |
Cui Y Y, Li M K, Zhu N L, et al. Bi-based visible light-driven nano-photocatalyst: the design, synthesis, and its application in pollutant governance and energy development [J]. Nano Today, 2022, 43: 101432
|
[14] |
Zahid A H, Han Q F. A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs [J]. Nanoscale, 2021, 13: 17687
|
[15] |
Cheng H F, Huang B B, Lu J B, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs [J]. Phys. Chem. Chem. Phys., 2010, 12(47): 15468
|
[16] |
Guan X, Wang X L, Zhu X W, et al. Construction of a Z-scheme heterojunction bifunctional photocatalyst with Ag-modified AgBr embedded in β-Bi2O3 flowers [J]. Phys. Chem. Chem. Phys., 2023, 25(19): 13474
doi: 10.1039/d3cp01223a
pmid: 37132270
|
[17] |
Xue W X, Xie L Y, Wang W J, et al. Preparation and photocatalytic properties of composite photocatalyst β-Bi2O3/BiOCOOH with hierarchical structure [J]. Chin. J. Mater. Res., 2020, 34(4): 311
|
[17] |
薛文兴, 谢丽燕, 王万军 等. 多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能 [J]. 材料研究学报, 2020, 34(4): 311
doi: 10.11901/1005.3093.2019.471
|
[18] |
Dong F, Xiong T, Sun Y J, et al. A semimetal bismuth element as a direct plasmonic photocatalyst [J]. Chem. Commun., 2014, 50(72): 10386
|
[19] |
Toudert J, Serna R, De Castro M J. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range [J]. J. Phys. Chem., 2012, 116C(38) : 20530
|
[20] |
Yu Y, Yang Z X, Shang Z C, et al. One-step solution combustion synthesis of Bi/BiOCl nanosheets: Reaction mechanism and photocatalytic RhB degradation [J]. J. Phys. Chem. Solids, 2023, 174: 111172
|
[21] |
Zhou H, Zhong S T, Shen M, et al. Formamide-assisted one-pot synthesis of a Bi/Bi2O2CO3 heterojunction photocatalyst with enhanced photocatalytic activity [J]. J. Alloys Compd., 2018, 769: 301
|
[22] |
Zhou H, Kalware K, Shen M, et al. Formamide-Assisted one-step synthesis of BiOCOOH and Bi/BiOCOOH micro-/nanostructures with tunable morphologies and composition and their photocatalytic activities [J]. Cryst. Eng. Comm., 2020, 22(8): 1368
|
[23] |
Ma H, Yang X, Tang X N, et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light [J]. Appl. Surf. Sci., 2022, 572: 151348
|
[24] |
Sudapalli A M, Shimpi N G. Hierarchical self-assembly of 0D/2D β-Bi2O3 crossandra flower morphology exhibits excellent photocatalytic activity against bromophenol dyes [J]. Opt. Mater., 2022, 132: 112849
|
[25] |
Li X, Yu J G, Jaroniec M. Hierarchical photocatalysts [J]. Chem. Soc. Rev., 2016, 45(9): 2603
doi: 10.1039/c5cs00838g
pmid: 26963902
|
[26] |
Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34(12): 921
|
[26] |
孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34(12): 921
doi: 10.11901/1005.3093.2020.182
|
[27] |
Zhang P, Rao Y F, Huang Y, et al. Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NO x oxidation: Intensified hot-electron transfer and reactive oxygen species generation [J]. Chem. Eng. J., 2021, 420: 129814
|
[28] |
Shamaila S, Sajjad A K L, Chen F, et al. Study on highly visible light active Bi2O3 loaded ordered mesoporous titania [J]. Appl. Catal., 2010, 94B(3-4) : 272
|
[29] |
Aissaoui N, Liascukiene I, Genet M J, et al. Unravelling surface changes on Cu-Ni alloy upon immersion in aqueous media simulating catalytic activity of aerobic biofilms [J]. Appl. Surf. Sci., 2020, 503: 144081
|
[30] |
Jia S H, Wang B, Liu J Y, et al. Morphology normalization of peony flower-like Bi2O2CO3 boosts photocatalytic seawater purification [J]. Colloids Surf., 2022, 653A: 129915.
|
[31] |
Zhou H, Zhong S T, Shen M, et al. Composite soft template-assisted construction of a flower-like β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for the enhanced simulated sunlight photocatalytic degradation of tetracycline [J]. Ceram. Int., 2019, 45(12): 15036
doi: 10.1016/j.ceramint.2019.04.240
|
[32] |
Zhao L Y, Fang W L, Meng X C, et al. In-situ synthesis of metal Bi to improve the stability of oxygen vacancies and enhance the photocatalytic activity of Bi4O5Br2 in H2 evolution [J]. J. Alloys Compd., 2022, 910: 164883
|
[33] |
Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure Appl. Chem., 1985, 57(4): 603
|
[34] |
Valencia G K, López A, Hernández-Gordillo A, et al. Stabilized β-Bi2O3 nanoparticles from (BiO)4CO3(OH)2 precursor and their photocatalytic properties under blue light [J]. Ceram. Int., 2018, 44(18): 22329
|
[35] |
Yang X T, Zhang X, Wu T, et al. Novel approach for preparation of three-dimensional BiOBr/BiOI hybrid nanocomposites and their removal performance of antibiotics in water [J]. Colloids Surf., 2020, 605A: 125344
|
[36] |
Wang Z H, Jia Y N, Wu X F, et al. Preparation and characterization of Bi2SiO5/BiVO4 n-n isotype heterojunction composites as a visible-light-induced photocatalyst for tetracycline and levofloxacin degradation [J]. J. Mater. Sci. Mater. Electron., 2023, 34: 433
|
[37] |
Ma Z Y, Huang X N, Xu N, et al. An effective strategy for boosting photoinduced charge separation of Ag3PO4 by BiVO4 with enhanced visible light photodegradation efficiency for levofloxacin and methylene blue [J]. Spectrochim. Acta Part, 2020, 229A: 117986
|
[38] |
Li Y H, Yin W Y, Yang N, et al. Ag/AgCl/Bi2O3/BiFeO3@zeolite for photocatalytic degradation of levofloxacin hydrochloride [J]. Mater. Chem. Phys., 2023, 308: 128189
|
[39] |
Nie J K, Yu X J, Wei Y C, et al. Interfacial charge transfer effects of α-Fe2O3/Cu2O heterojunction and enhancement mechanism of its photocatalytic oxidation [J]. Process. Saf. Environ. Prot., 2023, 170: 241
|
[40] |
He Y Q, Xu N, Junior L B, et al. Construction of AuNPs/h-BN nanocomposites by using gold as interfacial electron transfer mediator with highly efficient degradation for levofloxacin hydrochloride and hydrogen generation [J]. Appl. Surf. Sci., 2020, 520: 146336
|
[41] |
Jandaghian F, Pirbazari A E, Tavakoli O, et al. Comparison of the performance of Ag-deposited ZnO and TiO2 nanoparticles in levofloxacin degradation under UV/visible radiation [J]. J. Hazard. Mater. Adv., 2023, 9: 100240
|
[42] |
Sun Y J, Zhao Z W, Zhang W D, et al. Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO)2CO3 and Bi particles [J]. J. Colloid Interface Sci., 2017, 485: 1
|
[43] |
Yin J W, Xing Z P, Kuang J Y, et al. Bi plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunctions as efficient visible-light-driven photocatalysts [J]. J. Alloys Compd., 2018, 750: 659
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|