Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 549-560    DOI: 10.11901/1005.3093.2023.430
  研究论文 本期目录 | 过刊浏览 |
鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能
周慧1, 杜彬1, 杨鹏斌1, 金党琴1, 肖伽励1, 沈明2(), 王升文1
1.扬州工业职业技术学院化学工程学院 扬州 225127
2.扬州大学化学化工学院 扬州 225002
Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities
ZHOU Hui1, DU Bin1, YANG Pengbin1, JIN Dangqin1, XIAO Jiali1, SHEN Ming2(), WANG Shengwen1
1.School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
2.College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
引用本文:

周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
Hui ZHOU, Bin DU, Pengbin YANG, Dangqin JIN, Jiali XIAO, Ming SHEN, Shengwen WANG. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. Chinese Journal of Materials Research, 2024, 38(7): 549-560.

全文: PDF(12546 KB)   HTML
摘要: 

在葡萄糖酸钠的辅助下用水热法制备鸟巢状含铋前驱体,研究了水热温度和反应物的浓度对其形貌和组成的影响及其生成机理。在150~400℃将前驱体煅烧制备出Bi/β-Bi2O3异质结分等级微纳结构。将前驱体煅烧使其分解生成Bi2O3,葡萄糖酸生成的碳将Bi3+原位还原为单质Bi。煅烧过程中的相变为:前驱体→Bi/β-Bi2O3(150~280℃)→Bi/β-Bi2O3/α-Bi2O3(300~350℃)→Bi(400℃)。以盐酸左氧氟沙星(LVFH)的降解为探针反应,研究了样品的可见光催化性能。结果表明:在280℃将前驱体煅烧制备的鸟巢状Bi/β-Bi2O3异质结材料具有最好的可见光催化活性,用可见光照射140 min对LVFH降解率达到97.75%。其具有较优异的光催化性能,可归因于鸟巢状分等级结构和原位生成的Bi纳米粒子的SPR效应提高了可见光的吸收并促进了光生载流子的分离。这种Bi/β-Bi2O3异质结光催化剂,还具有良好的可循环使用性能。

关键词 复合材料Bi/β-Bi2O3可见光催化葡萄糖酸钠异质结盐酸左氧氟沙星    
Abstract

The nest-like bismuth-containing precursor was prepared by hydrothermal method with sodium gluconate as auxiliaries. The effect of the hydrothermal temperature and reactant concentration on the morphology and composition of the prepared precursor were systematically studied, and the formation mechanism of the precursor was elucidated. Then, calcination of the precursor was carried out at 150oC~400oC, during which the precursor decomposed to Bi2O3. At the same time, the carbon generated by high-temperature carbonization of the gluconic acid involved in the skeleton of the precursor can in situ reduce Bi3+ to Bi nanoparticles. The phase transition during calcination process can be described as: precursor→Bi/β-Bi2O3 (150oC~280oC) →Bi/β-Bi2O3/α-Bi2O3 (300oC~350oC)→Bi (400oC). The degradation of levofloxacin hydrochloride (LVFH) was used as a probe to evaluate the visible-light photocatalytic performance of the as-prepared Bi/β-Bi2O3 heterojunctions. Among others, the Bi/β-Bi2O3 heterojunction obtained at 280oC exhibited the best visible-light photocatalytic activity, and the degradation rate of LVFH can reach 97.75% after 140 min of visible-light irradiation. Its superior photocatalytic performance was attributed to the nest-like hierarchical structure and the SPR effect of the in situ generated Bi-nanoparticles, which improved visible-light harvesting and promoted the separation of photogenerated carriers. In addition, the Bi/β-Bi2O3 heterojunction photocatalyst showed good recyclable and reusable performance.

Key wordscomposite    Bi/β-Bi2O3    visible-light photocatalysis    sodium gluconate    heterojunction    levofloxacin hydrochloride
收稿日期: 2023-08-29     
ZTFLH:  O643.36  
基金资助:国家自然科学基金(21673201);江苏省高等学校自然科学研究项目(22KJB156);扬州市科技计划项目(YZ2022081);扬州市科技计划项目(YZ2022196);扬州工业职业技术学院自然科学类重点课题(2021xjzk004)
通讯作者: 沈 明,教授,shenming@yzu.edu.cn,研究方向为功能纳米材料制备与应用
Corresponding author: SHEN Ming, Tel: 13665248181, E-mail: shenming@yzu.edu.cn
作者简介: 周 慧,女,1983年生,博士
图1  前驱体和样品的合成流程示意图
图2  前驱体的SEM和TEM照片
图3  前驱体的XRD谱
图4  前驱体的XPS全谱和Bi4f、C1s和O1s的高分辨谱
Chemical formulaElementEA resultsTheoretical calculation
(BiO)4(C6H11O7)(OH)3C6.286.29
H1.371.22
O17.9719.54
N0.070
表1  前驱体的元素分析结果
图5  水热时间不同的样品的SEM照片
图6  煅烧温度不同的样品的XRD谱
图7  前驱体样品的热重分析曲线
图8  280℃煅烧的Bi/β-Bi2O3异质结光催化剂的XPS全谱和Bi4f的高分辨谱
图9  在280℃煅烧的Bi/β-Bi2O3质结光催化剂的SEM、TEM图像、选区电子衍射以及HRTEM图像
图10  前驱体和Bi/β-Bi2O3样品的N2等温线(插图为其对应的孔径分布图)、纯β-Bi2O3和在280℃煅烧的Bi/β-Bi2O3样品的UV-Vis DRS谱
图11  以在280℃煅烧的Bi/β-Bi2O3为光催化剂降解LVFH溶液UV-Vis光谱时间演变曲线、不同光催化剂对LFVH降解效率曲线、其对应的准一级反应动力学拟合曲线以及以Bi/β-Bi2O3为光催化剂降解LFVH的循环实验
Photocatalyst and dosage / g·L-1

Concentration

of LVFH / mg·L-1

Light sourceDegradation efficiency / %Ref.
BiOBr/BiOI / 120500 W Xe lamp (λ > 420 nm)97 (120 min)[35]
Bi2SiO5/BiVO4 / 0.510300 W Xe lamp (λ > 420 nm)80.3 (120 min)[36]
Ag3PO4/BiVO4 / 110500 W Xe lamp (λ > 400 nm)92.44 (180 min)[37]

Ag/AgCl/Bi2O3/BiFeO3@zeolite

/ 1~1.2

18350 W Xe lamp

72.09~73.55

(150 min)

[38]
α-Fe2O3/Cu2O / 131

500 W halogen tungsten

lamp (400~1100 nm)

79.4 (240 min)[39]
AuNPs/h-BN / 110300 W Xe lamp (λ > 400 nm)84.4 (210 min)[40]
Ag/ZnO / 125500 W halogen tungsten lamp56 (180 min)[41]
Bi/β-Bi2O3 / 120250 W Xe lamp (λ > 420 nm)97.75 (140 min)This work
表2  不同光催化剂降解LVFH性能的比较
图12  以Bi/β-Bi2O3为光催化剂加入捕获剂TBA、BQ和EDTA前后降解LFVH的对比曲线以及在可见光照射下Bi、β-Bi2O3和Bi/β-Bi2O3的瞬时光电流密度
图13  在可见光照射下Bi/β-Bi2O3异质结对LVFH降解过程中光生载流子的迁移机理示意图
[1] Li Y H, Zhang J W, Chen L J, et al. Construction of flower-like Zn2+/BiOBr with enhanced visible photocatalytic activity for the degradation of levofloxacin [J]. Inorg. Chem. Commun., 2023, 148: 110277
[2] Kovalakova P, Cizmas L, McDonald T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351
[3] Li T Z, Ouyang W, Lin C Y, et al. Occurrence, distribution, and potential ecological risks of antibiotics in a seasonal freeze-thaw basin [J]. J. Hazard. Mater., 2023, 459: 132301
[4] Hanna N, Tamhankar A J, Lundborg C S. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment [J]. Lancet Planet. Health, 2023, 7(1): e45
doi: 10.1016/S2542-5196(22)00254-6 pmid: 36608948
[5] Pons M J, Mosquito S, Gomes C, et al. Analysis of quinolone-resistance in commensal and diarrheagenic Escherichia coli isolates from infants in Lima, Peru [J]. Trans. Roy. Soc. Trop. Med. Hyg., 2014, 108(1): 22
[6] Choudhary K, Saini R, Purohit L P. Controllable synthesis of Ce-doped ZnO: TiO2 nanospheres for photocatalytic degradation of MB dye and levofloxacin under sunlight light irradiation [J]. Opt. Mater., 2023, 143: 114167
[7] Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnO x microspheres [J]. Chem. Eng. J., 2020, 379: 122340
[8] Luo Y Y, Liu C, Wang Y, et al. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: A review [J]. Mar. Pollut. Bull., 2023, 193: 115189
[9] Estofan L J F, Naydin S, Gliebus G. Quinolone-induced painful peripheral neuropathy: a case report and literature review [J]. J. Invest. Med. High Impact Case Rep., 2018, 6: 1
[10] Gupta G, Kansal S K. Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase [J]. Process Saf. Environ. Prot., 2019, 128: 342
[11] Guo W Q, Guo T, Zhang Y Z, et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review [J]. Chemosphere, 2023, 339: 139486
[12] Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
[12] 任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
[13] Cui Y Y, Li M K, Zhu N L, et al. Bi-based visible light-driven nano-photocatalyst: the design, synthesis, and its application in pollutant governance and energy development [J]. Nano Today, 2022, 43: 101432
[14] Zahid A H, Han Q F. A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs [J]. Nanoscale, 2021, 13: 17687
[15] Cheng H F, Huang B B, Lu J B, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs [J]. Phys. Chem. Chem. Phys., 2010, 12(47): 15468
[16] Guan X, Wang X L, Zhu X W, et al. Construction of a Z-scheme heterojunction bifunctional photocatalyst with Ag-modified AgBr embedded in β-Bi2O3 flowers [J]. Phys. Chem. Chem. Phys., 2023, 25(19): 13474
doi: 10.1039/d3cp01223a pmid: 37132270
[17] Xue W X, Xie L Y, Wang W J, et al. Preparation and photocatalytic properties of composite photocatalyst β-Bi2O3/BiOCOOH with hierarchical structure [J]. Chin. J. Mater. Res., 2020, 34(4): 311
[17] 薛文兴, 谢丽燕, 王万军 等. 多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能 [J]. 材料研究学报, 2020, 34(4): 311
doi: 10.11901/1005.3093.2019.471
[18] Dong F, Xiong T, Sun Y J, et al. A semimetal bismuth element as a direct plasmonic photocatalyst [J]. Chem. Commun., 2014, 50(72): 10386
[19] Toudert J, Serna R, De Castro M J. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range [J]. J. Phys. Chem., 2012, 116C(38) : 20530
[20] Yu Y, Yang Z X, Shang Z C, et al. One-step solution combustion synthesis of Bi/BiOCl nanosheets: Reaction mechanism and photocatalytic RhB degradation [J]. J. Phys. Chem. Solids, 2023, 174: 111172
[21] Zhou H, Zhong S T, Shen M, et al. Formamide-assisted one-pot synthesis of a Bi/Bi2O2CO3 heterojunction photocatalyst with enhanced photocatalytic activity [J]. J. Alloys Compd., 2018, 769: 301
[22] Zhou H, Kalware K, Shen M, et al. Formamide-Assisted one-step synthesis of BiOCOOH and Bi/BiOCOOH micro-/nanostructures with tunable morphologies and composition and their photocatalytic activities [J]. Cryst. Eng. Comm., 2020, 22(8): 1368
[23] Ma H, Yang X, Tang X N, et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light [J]. Appl. Surf. Sci., 2022, 572: 151348
[24] Sudapalli A M, Shimpi N G. Hierarchical self-assembly of 0D/2D β-Bi2O3 crossandra flower morphology exhibits excellent photocatalytic activity against bromophenol dyes [J]. Opt. Mater., 2022, 132: 112849
[25] Li X, Yu J G, Jaroniec M. Hierarchical photocatalysts [J]. Chem. Soc. Rev., 2016, 45(9): 2603
doi: 10.1039/c5cs00838g pmid: 26963902
[26] Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34(12): 921
[26] 孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34(12): 921
doi: 10.11901/1005.3093.2020.182
[27] Zhang P, Rao Y F, Huang Y, et al. Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NO x oxidation: Intensified hot-electron transfer and reactive oxygen species generation [J]. Chem. Eng. J., 2021, 420: 129814
[28] Shamaila S, Sajjad A K L, Chen F, et al. Study on highly visible light active Bi2O3 loaded ordered mesoporous titania [J]. Appl. Catal., 2010, 94B(3-4) : 272
[29] Aissaoui N, Liascukiene I, Genet M J, et al. Unravelling surface changes on Cu-Ni alloy upon immersion in aqueous media simulating catalytic activity of aerobic biofilms [J]. Appl. Surf. Sci., 2020, 503: 144081
[30] Jia S H, Wang B, Liu J Y, et al. Morphology normalization of peony flower-like Bi2O2CO3 boosts photocatalytic seawater purification [J]. Colloids Surf., 2022, 653A: 129915.
[31] Zhou H, Zhong S T, Shen M, et al. Composite soft template-assisted construction of a flower-like β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for the enhanced simulated sunlight photocatalytic degradation of tetracycline [J]. Ceram. Int., 2019, 45(12): 15036
doi: 10.1016/j.ceramint.2019.04.240
[32] Zhao L Y, Fang W L, Meng X C, et al. In-situ synthesis of metal Bi to improve the stability of oxygen vacancies and enhance the photocatalytic activity of Bi4O5Br2 in H2 evolution [J]. J. Alloys Compd., 2022, 910: 164883
[33] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure Appl. Chem., 1985, 57(4): 603
[34] Valencia G K, López A, Hernández-Gordillo A, et al. Stabilized β-Bi2O3 nanoparticles from (BiO)4CO3(OH)2 precursor and their photocatalytic properties under blue light [J]. Ceram. Int., 2018, 44(18): 22329
[35] Yang X T, Zhang X, Wu T, et al. Novel approach for preparation of three-dimensional BiOBr/BiOI hybrid nanocomposites and their removal performance of antibiotics in water [J]. Colloids Surf., 2020, 605A: 125344
[36] Wang Z H, Jia Y N, Wu X F, et al. Preparation and characterization of Bi2SiO5/BiVO4 n-n isotype heterojunction composites as a visible-light-induced photocatalyst for tetracycline and levofloxacin degradation [J]. J. Mater. Sci. Mater. Electron., 2023, 34: 433
[37] Ma Z Y, Huang X N, Xu N, et al. An effective strategy for boosting photoinduced charge separation of Ag3PO4 by BiVO4 with enhanced visible light photodegradation efficiency for levofloxacin and methylene blue [J]. Spectrochim. Acta Part, 2020, 229A: 117986
[38] Li Y H, Yin W Y, Yang N, et al. Ag/AgCl/Bi2O3/BiFeO3@zeolite for photocatalytic degradation of levofloxacin hydrochloride [J]. Mater. Chem. Phys., 2023, 308: 128189
[39] Nie J K, Yu X J, Wei Y C, et al. Interfacial charge transfer effects of α-Fe2O3/Cu2O heterojunction and enhancement mechanism of its photocatalytic oxidation [J]. Process. Saf. Environ. Prot., 2023, 170: 241
[40] He Y Q, Xu N, Junior L B, et al. Construction of AuNPs/h-BN nanocomposites by using gold as interfacial electron transfer mediator with highly efficient degradation for levofloxacin hydrochloride and hydrogen generation [J]. Appl. Surf. Sci., 2020, 520: 146336
[41] Jandaghian F, Pirbazari A E, Tavakoli O, et al. Comparison of the performance of Ag-deposited ZnO and TiO2 nanoparticles in levofloxacin degradation under UV/visible radiation [J]. J. Hazard. Mater. Adv., 2023, 9: 100240
[42] Sun Y J, Zhao Z W, Zhang W D, et al. Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO)2CO3 and Bi particles [J]. J. Colloid Interface Sci., 2017, 485: 1
[43] Yin J W, Xing Z P, Kuang J Y, et al. Bi plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunctions as efficient visible-light-driven photocatalysts [J]. J. Alloys Compd., 2018, 750: 659
[1] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[2] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[3] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[4] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[5] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[6] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[9] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[10] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.