Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 537-548    DOI: 10.11901/1005.3093.2023.267
  研究论文 本期目录 | 过刊浏览 |
钛合金的超高周疲劳滑移-解理竞争失效机制
杨溥1, 邓海龙1,2(), 康贺铭1, 刘杰1, 孔建行1, 孙宇凡1, 于欢1, 陈雨1
1.内蒙古工业大学机械工程学院 呼和浩特 010051
2.内蒙古工业大学 内蒙古自治区先进制造技术重点实验室 呼和浩特 010051
Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime
YANG Pu1, DENG Hailong1,2(), KANG Heming1, LIU Jie1, KONG Jianhang1, SUN Yufan1, YU Huan1, CHEN Yu1
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China
引用本文:

杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
Pu YANG, Hailong DENG, Heming KANG, Jie LIU, Jianhang KONG, Yufan SUN, Huan YU, Yu CHEN. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. Chinese Journal of Materials Research, 2024, 38(7): 537-548.

全文: PDF(13066 KB)   HTML
摘要: 

对TC4钛合金进行应力比为-1、-0.3和0.1的室温超高周疲劳实验,研究了微结构导致的超高周疲劳滑移-解理竞争失效机制。结果表明,这种合金的S-N曲线均呈双线性,表现出表面滑移失效、表面解理失效和内部解理失效三种失效模式。采用GP极值分布函数明确了表面缺陷尺寸的分布特性,并将其定义为试样表面区域厚度。计及试样的控制体积、外载荷大小、α晶粒含量以及α晶粒尺寸等微结构的耦合影响,将σmax值的增大或减小作为TC4钛合金疲劳失效模式转变的主要因素构建了竞争失效模型。结果表明,所建模型的预测结果与实验数据有较好的相关性。用控制变量法研究了W值、α晶粒尺寸和α晶粒含量对TC4钛合金滑移-解理竞争失效机制的影响,发现W的取值并不影响表面滑移失效概率,α晶粒的增大或α晶粒含量的降低均有利于TC4钛合金的表面滑移失效;较大的W值、较大的α晶粒尺寸以及较少的α晶粒含量均有利于TC4钛合金的表面解理失效;较小的W值、较大的α晶粒尺寸以及较少的α晶粒含量均有利于TC4钛合金的内部解理失效。

关键词 金属材料超高周疲劳失效机理TC4钛合金滑移-解理竞争失效    
Abstract

In order to comprehensively evaluate the influence of alloy structure on the competition mechanism of slip-cleavage failures during ultra-high cycle fatigue process of Ti-alloy, a competition failure model considering the maximum stress (σmax) was constructed, and then the competition mechanism among failure modes was quantitatively described. Furthermore, the influence of microstructure (surface defects, α-grain size and α-grain content) on the competition mechanism was revealed in detail by means of the control variable method. Meanwhile, ultra-high cycle fatigue tests of TC4 Ti-alloy under stress ratios of -1, -0.3 and 0.1 were carried out at room temperature. The S-N curves obtained under three stress ratios were bilinear, and TC4 Ti-alloy showed three failure modes, namely surface slip failure, surface cleavage failure and internal cleavage failure. The GP extreme value distribution function is used to clarify the distribution characteristics of the surface defect size, and the predicted extreme size of the surface defect is 5.69 μm, which is defined as the thickness of the sample surface area. Next, the coupling effect of microstructure variables such as control volume, external load, α-grain content and α-grain size, the increase or decrease of σmax value is taken as the main factor of fatigue failure mode transformation of TC4 Ti-alloy and the competitive failure model is constructed. The calculation results show that the model prediction results have a good correlation with the experimental data. Finally, the effect of W value, α-grain size and α-grain content on the slip-cleavage competition failure mechanism of TC4 Ti-alloy was investigated by the control variable method. It is concluded that smaller W value, larger α-grain size and less α-grain content are beneficial to the internal cleavage failure of TC4 Ti-alloy. The value of W does not affect the probability of surface slip failure, and the increase of α-grain size or the decrease of α-grain contentis beneficial to the surface slip failure of TC4 Ti-alloy; The smaller W value, larger α-grain size and less α-grain content is all conducive to internal cleavage failure of TC4 titanium alloy.

Key wordsmetallic materials    very-high cycle fatigue    failure mechanism    TC4 titanium alloy    slip-cleavage    competition failure
收稿日期: 2023-05-24     
ZTFLH:  TG131  
基金资助:内蒙古自治区自然科学基金(2022MS05014);内蒙古自治区自然科学基金(2021LHMS05009);内蒙古高等教育研究项目(NJZY21306);内蒙古自治区区直属高校基本科研业务项目(20220233);内蒙古工业大学科学研究项目(ZY202005)
通讯作者: 邓海龙,副教授,deng_hl@126.com,研究方向为结构及材料超高周疲劳特性
Corresponding author: DENG Hailong, Tel: 13674834148, E-mail: deng_hl@126.com
作者简介: 杨 溥,男,1996年生,硕士
MaterialCNHFeOAlVTi
TC40.050.030.010.150.135.834.09Bal.
表1  TC4钛合金的化学成分
图1  TC4钛合金的疲劳试样
图2  TC4钛合金的微观形貌
图3  TC4钛合金的S-N曲线
图4  TC4钛合金的典型失效断口
图5  TC4钛合金的裂纹特征示意图
图6  TC4钛合金表面失效特征尺寸
图7  TC4钛合金内部失效特征尺寸
ParametersaSD
λ24.59
α20.79
η2-0.72
表2  GP分布下参数值评估
图8  aSD的累积概率分布函数关系曲线
图9  TC4钛合金控制体积以及区域划分示意图
图10  三种失效模式的失效概率随σmax的变化情况
图11  与σmax有关的三种失效模式的失效概率随W的变化情况
图12  与σmax有关的三种失效模式的失效概率随a晶粒尺寸的变化情况
图13  与σmax有关的三种失效模式的失效概率与α晶粒含量的关系
[1] Liu C, Wang X, Men Y, et al. Dynamic recrystallization of Ti-6Al-4V alloy during hot compression [J]. Chin. J. Mater. Res., 2021, 35(8): 583
doi: 10.11901/1005.3093.2020.569
[1] 刘 超, 王 鑫, 门 月 等. Ti-6Al-4V合金热压缩过程中的动态再结晶 [J]. 材料研究学报, 2021, 35(8): 583
[2] Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36(6): 409
doi: 10.11901/1005.3093.2021.411
[2] 高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36(6): 409
[3] Wang W, Zhou S Q, Gong P H, et al. Effect of anneal treatment on microstructure, texture and mechanical properties of TC4 alloy plates [J]. Chin. J. Mater. Res., 2023, 37(1): 70
doi: 10.11901/1005.3093.2022.103
[3] 王 伟, 周山琦, 宫鹏辉 等. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响 [J]. 材料研究学报, 2023, 37(1): 70
[4] Jiao H B, Mo S. Present status and development trend of aircraft turbine engine [J]. Aeronaut. Manuf. Technol., 2015, (12): 62
[4] 焦华宾, 莫 松. 航空涡轮发动机现状及未来发展综述 [J]. 航空制造技术, 2015, (12): 62
[5] Li Q H, Wang Y R, Chen M Z. The Design Problem of Aero-Engine Structure Strength [M]. Shanghai: Shanghai Jiaotong University Press, 2014
[5] 李其汉, 王延荣, 陈懋章. 航空发动机结构强度设计问题 [M]. 上海: 上海交通大学出版社, 2014
[6] Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25(2): 280
[6] 金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
[7] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
[8] Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
[9] Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Crystallogr., 1982, 15(1): 137
[10] Sun Y B, Lei J J. Research on fatigue crack propagation and remain fatigue life prediction of aero-engine blade TC4 titaniumalloy [J]. Surf. Technol., 2016, 45(9): 207
[10] 孙宇博, 雷娟娟. 航空发动机叶片TC4钛合金振动疲劳裂纹扩展研究及剩余寿命预测 [J]. 表面技术, 2016, 45(9): 207
[11] Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
[12] Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
[12] 孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
[13] Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
[14] Ding C F, Liu J Z, Wu X R. An investigation of small-crack and long-crack propagation behavior in titanium alloy TC4 and aluminum alloy 7475-T7351 [J]. J. Aeronaut. Mater., 2005, 25(6): 11
[14] 丁传富, 刘建中, 吴学仁. TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究 [J]. 航空材料学报, 2005, 25(6): 11
[15] Liu X, Sun C, Hong Y. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios [J]. Int. J.Fatigue2016, (92): 434
[16] Atrens A, Hoffelner W, Duerig T W, et al. Subsurface crack initiation in high cycle fatigue in Ti6A14V and in a typical martensitic stainless steel [J]. Scr. Metall., 1983, 17(5): 601
[17] Zuo J H, Wang Z G, Han E H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V [J]. Mater. Sci. Eng., 2008, 473A: 147
[18] Neal D F, Blenkinsop P A. Internal fatigue origins in α-β titanium alloys [J]. Acta Metall., 1976, 24: 59
[19] Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
[20] Hong Y S, Sun C Q, Liu X L. A review on mechanisms and models for very-high-cycle fatigue of metallic materials [J]. Adv. Mech., 2018, 48(1): 201801
[20] 洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述 [J]. 力学进展, 2018, 48(1): 201801
[21] Jha S K, Ravi Chandran K S. An unusual fatigue phenomenon: duality of the S-N fatigue curve in the β-titanium alloy Ti-10V-2Fe-3Al [J]. Scr. Mater., 2003, 48: 1207
[22] Liu F L, He C, Chen Y, et al. Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime [J]. Int. J. Fatigue, 2020, 140: 105795
[23] Liu X L, Sun C Q, Hong Y S. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios [J]. Int. J. Fatigue, 2016, 92: 434
[24] Zhang Z Y. Fatigue failure mechanism and strength-life prediction method of TC4 titanium alloy for compressor blade in very high cycle regime [D]. Beijing: Beijing Institute of Technology, 2015
[24] 张震宇. 压气机叶片TC4钛合金超高周疲劳失效机制及强度-寿命预测方法 [D]. 北京: 北京理工大学, 2015
[25] Liu H, Wang H, Huang Z, Wang Q, Chen Q. Comparative study of very high cycle tensile and torsional fatigue in TC17 titanium alloy [J]. Int. J. Fatigue 2020, (139): 105720
[26] Wu Y, Liu J, Wang H, et al. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1189
doi: 10.1016/j.jmst.2017.11.036
[27] Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
[28] Pippan R, Tabernig B, Gach E, et al. Non-propagation conditions for fatigue cracks and fatigue in the very high-cycle regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 805
[29] Nakajima M, Tokaji K, Itoga H, et al. Effect of loading condition on very high cycle fatigue behavior in a high strength steel [J]. Int. J. Fatigue, 2010, 32(2): 475
[30] Luo J, Li M Q, Yu W X. Microstructure evolution during high temperature deformation of Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2010, 39(8): 1323
[30] 罗 皎, 李淼泉, 于卫新. TC4钛合金高温变形时的微观组织演变(英文) [J]. 稀有金属材料与工程, 2010, 39(8): 1323
[31] Yu S S, Yan Z G, Chen J H. Simulation of deformation at and initiation of crack tip prior to cleavage fracture by means of finite element method [J]. J. Lanzhou Univ. Technol., 2004, 30(2): 10
[31] 俞树荣, 严志刚, 陈剑虹. 解理断裂前裂纹尖端变形与开裂的有限元模拟 [J]. 兰州理工大学学报, 2004, 30(2): 10
[32] Zhu G S. High temperature deformation behavior of TC4 titanium alloy with different grain sizes [D]. Harbin: Harbin Institute of Technology, 2007
[32] 朱桂双. 不同晶粒尺寸TC4钛合金高温变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007
[33] Stanzl-Tschegg S, Mughrabi H, Schoenbauer B. Life time and cyclic slip of copper in the VHCF regime [J]. Int. J. Fatigue, 2007, 29: 2050
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[3] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[4] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[5] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[6] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[8] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[9] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[10] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[11] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[12] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[13] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[14] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[15] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.