|
|
钛合金的超高周疲劳滑移-解理竞争失效机制 |
杨溥1, 邓海龙1,2( ), 康贺铭1, 刘杰1, 孔建行1, 孙宇凡1, 于欢1, 陈雨1 |
1.内蒙古工业大学机械工程学院 呼和浩特 010051 2.内蒙古工业大学 内蒙古自治区先进制造技术重点实验室 呼和浩特 010051 |
|
Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime |
YANG Pu1, DENG Hailong1,2( ), KANG Heming1, LIU Jie1, KONG Jianhang1, SUN Yufan1, YU Huan1, CHEN Yu1 |
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China |
引用本文:
杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
Pu YANG,
Hailong DENG,
Heming KANG,
Jie LIU,
Jianhang KONG,
Yufan SUN,
Huan YU,
Yu CHEN.
Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. Chinese Journal of Materials Research, 2024, 38(7): 537-548.
[1] |
Liu C, Wang X, Men Y, et al. Dynamic recrystallization of Ti-6Al-4V alloy during hot compression [J]. Chin. J. Mater. Res., 2021, 35(8): 583
doi: 10.11901/1005.3093.2020.569
|
[1] |
刘 超, 王 鑫, 门 月 等. Ti-6Al-4V合金热压缩过程中的动态再结晶 [J]. 材料研究学报, 2021, 35(8): 583
|
[2] |
Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36(6): 409
doi: 10.11901/1005.3093.2021.411
|
[2] |
高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36(6): 409
|
[3] |
Wang W, Zhou S Q, Gong P H, et al. Effect of anneal treatment on microstructure, texture and mechanical properties of TC4 alloy plates [J]. Chin. J. Mater. Res., 2023, 37(1): 70
doi: 10.11901/1005.3093.2022.103
|
[3] |
王 伟, 周山琦, 宫鹏辉 等. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响 [J]. 材料研究学报, 2023, 37(1): 70
|
[4] |
Jiao H B, Mo S. Present status and development trend of aircraft turbine engine [J]. Aeronaut. Manuf. Technol., 2015, (12): 62
|
[4] |
焦华宾, 莫 松. 航空涡轮发动机现状及未来发展综述 [J]. 航空制造技术, 2015, (12): 62
|
[5] |
Li Q H, Wang Y R, Chen M Z. The Design Problem of Aero-Engine Structure Strength [M]. Shanghai: Shanghai Jiaotong University Press, 2014
|
[5] |
李其汉, 王延荣, 陈懋章. 航空发动机结构强度设计问题 [M]. 上海: 上海交通大学出版社, 2014
|
[6] |
Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25(2): 280
|
[6] |
金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
|
[7] |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
|
[8] |
Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
|
[9] |
Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Crystallogr., 1982, 15(1): 137
|
[10] |
Sun Y B, Lei J J. Research on fatigue crack propagation and remain fatigue life prediction of aero-engine blade TC4 titaniumalloy [J]. Surf. Technol., 2016, 45(9): 207
|
[10] |
孙宇博, 雷娟娟. 航空发动机叶片TC4钛合金振动疲劳裂纹扩展研究及剩余寿命预测 [J]. 表面技术, 2016, 45(9): 207
|
[11] |
Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
|
[12] |
Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
|
[12] |
孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
|
[13] |
Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
|
[14] |
Ding C F, Liu J Z, Wu X R. An investigation of small-crack and long-crack propagation behavior in titanium alloy TC4 and aluminum alloy 7475-T7351 [J]. J. Aeronaut. Mater., 2005, 25(6): 11
|
[14] |
丁传富, 刘建中, 吴学仁. TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究 [J]. 航空材料学报, 2005, 25(6): 11
|
[15] |
Liu X, Sun C, Hong Y. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios [J]. Int. J.Fatigue, 2016, (92): 434
|
[16] |
Atrens A, Hoffelner W, Duerig T W, et al. Subsurface crack initiation in high cycle fatigue in Ti6A14V and in a typical martensitic stainless steel [J]. Scr. Metall., 1983, 17(5): 601
|
[17] |
Zuo J H, Wang Z G, Han E H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V [J]. Mater. Sci. Eng., 2008, 473A: 147
|
[18] |
Neal D F, Blenkinsop P A. Internal fatigue origins in α-β titanium alloys [J]. Acta Metall., 1976, 24: 59
|
[19] |
Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
|
[20] |
Hong Y S, Sun C Q, Liu X L. A review on mechanisms and models for very-high-cycle fatigue of metallic materials [J]. Adv. Mech., 2018, 48(1): 201801
|
[20] |
洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述 [J]. 力学进展, 2018, 48(1): 201801
|
[21] |
Jha S K, Ravi Chandran K S. An unusual fatigue phenomenon: duality of the S-N fatigue curve in the β-titanium alloy Ti-10V-2Fe-3Al [J]. Scr. Mater., 2003, 48: 1207
|
[22] |
Liu F L, He C, Chen Y, et al. Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime [J]. Int. J. Fatigue, 2020, 140: 105795
|
[23] |
Liu X L, Sun C Q, Hong Y S. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios [J]. Int. J. Fatigue, 2016, 92: 434
|
[24] |
Zhang Z Y. Fatigue failure mechanism and strength-life prediction method of TC4 titanium alloy for compressor blade in very high cycle regime [D]. Beijing: Beijing Institute of Technology, 2015
|
[24] |
张震宇. 压气机叶片TC4钛合金超高周疲劳失效机制及强度-寿命预测方法 [D]. 北京: 北京理工大学, 2015
|
[25] |
Liu H, Wang H, Huang Z, Wang Q, Chen Q. Comparative study of very high cycle tensile and torsional fatigue in TC17 titanium alloy [J]. Int. J. Fatigue 2020, (139): 105720
|
[26] |
Wu Y, Liu J, Wang H, et al. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1189
doi: 10.1016/j.jmst.2017.11.036
|
[27] |
Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
|
[28] |
Pippan R, Tabernig B, Gach E, et al. Non-propagation conditions for fatigue cracks and fatigue in the very high-cycle regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 805
|
[29] |
Nakajima M, Tokaji K, Itoga H, et al. Effect of loading condition on very high cycle fatigue behavior in a high strength steel [J]. Int. J. Fatigue, 2010, 32(2): 475
|
[30] |
Luo J, Li M Q, Yu W X. Microstructure evolution during high temperature deformation of Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2010, 39(8): 1323
|
[30] |
罗 皎, 李淼泉, 于卫新. TC4钛合金高温变形时的微观组织演变(英文) [J]. 稀有金属材料与工程, 2010, 39(8): 1323
|
[31] |
Yu S S, Yan Z G, Chen J H. Simulation of deformation at and initiation of crack tip prior to cleavage fracture by means of finite element method [J]. J. Lanzhou Univ. Technol., 2004, 30(2): 10
|
[31] |
俞树荣, 严志刚, 陈剑虹. 解理断裂前裂纹尖端变形与开裂的有限元模拟 [J]. 兰州理工大学学报, 2004, 30(2): 10
|
[32] |
Zhu G S. High temperature deformation behavior of TC4 titanium alloy with different grain sizes [D]. Harbin: Harbin Institute of Technology, 2007
|
[32] |
朱桂双. 不同晶粒尺寸TC4钛合金高温变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007
|
[33] |
Stanzl-Tschegg S, Mughrabi H, Schoenbauer B. Life time and cyclic slip of copper in the VHCF regime [J]. Int. J. Fatigue, 2007, 29: 2050
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|