|
|
一种低密度钢等温压缩时组织的演化和动态再结晶 |
孙建1,2( ), 李景辉2, 黄贞益2, 章小峰2, 王东生1, 刘述庆1 |
1.铜陵学院机械工程学院 铜陵 244061 2.安徽工业大学冶金工程学院 马鞍山 243002 |
|
Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression |
SUN Jian1,2( ), LI Jinghui2, HUANG Zhenyi2, ZHANG Xiaofeng2, WANG Dongsheng1, LIU Shuqing1 |
1.School of Mechanical Engineering, Tongling University, 244061 Tongling, China 2.School of Metallurgical Engineering, Anhui University of Technology, 243002 Ma'anshan, China |
引用本文:
孙建, 李景辉, 黄贞益, 章小峰, 王东生, 刘述庆. 一种低密度钢等温压缩时组织的演化和动态再结晶[J]. 材料研究学报, 2024, 38(10): 768-781.
Jian SUN,
Jinghui LI,
Zhenyi HUANG,
Xiaofeng ZHANG,
Dongsheng WANG,
Shuqing LIU.
Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression[J]. Chinese Journal of Materials Research, 2024, 38(10): 768-781.
1 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
|
2 |
Gao Z Y, Kang Q F, An X L, et al. Enhanced mechanical properties of a Fe-Mn-Al-C austenitic low-density steel by increasing hot-rolling reduction [J]. Mater. Charact., 2023, 204: 113237
|
3 |
Gutierrez-Urrutia I. Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties [J]. ISIJ Int., 2021, 61: 16
doi: 10.2355/isijinternational.ISIJINT-2020-467
|
4 |
Zhang G F, Shi H Y, Wang S T, et al. Ultrahigh strength and high ductility lightweight steel achieved by dual nanoprecipitate strengthening and dynamic slip refinement [J]. Mater. Lett., 2023, 330: 133366
|
5 |
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
|
6 |
Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging [J]. Mater. Sci. Eng. A, 2023, 875: 145109
|
7 |
Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels [J]. J. Mater. Res. Technol., 2023
|
8 |
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
doi: 10.11900/0412.1961.2020.00509
|
8 |
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
|
9 |
Sun J, Huang Z Y, Li J H, et al. Research progress in heat treatment of Fe-Mn-Al-C system low-density steel [J]. Mater. Rep., 2023, 37(14): 140
|
9 |
孙 建, 黄贞益, 李景辉 等. Fe-Mn-Al-C系低密度钢热处理研究进展 [J]. 材料导报, 2023, 37(14): 140
|
10 |
Zhang X F, Wu X J, Tang L Z, et al. Cause analysis and control of edge crack of Iow density steel plate with high aluminum content [J]. Ordnance Mater. Sci. Eng., 2020, 43(5): 11
|
10 |
章小峰, 武学俊, 唐立志 等. 高铝低密度钢板带边裂成因分析及控制 [J]. 兵器材料科学与工程, 2020, 43(5): 11
|
11 |
Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low density Fe-Mn-Al-C steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
|
12 |
Yang F Q, Song R B, Zhang L F, et al. Hot deformation behavior of Fe-Mn-Al light-weight steel [J]. Procedia Eng., 2014, 81: 456
|
13 |
Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel [J]. Metals-Basel. 2022, 12(5): 831
|
14 |
Kalantaria A R, Hanzaki A Z, Abediba H R, et al. The high temperature deformation behavior of a Triplex (ferrite+austenite+martensite) low density steel [J]. J. Mater. Res. Technol., 2021, 13: 1388
|
15 |
Jiang S Y, Wang Y, Zhang Y Q, et al. Constitutive behavior and microstructural evolution of FeMnSiCrNi shape memory alloy subjected to compressive deformation at high temperatures [J]. Mater. Des., 2019, 182: 108019
|
16 |
Zhang H M, Chen G, Chen Q, et al. A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions [J]. J. Alloys Compd., 2018, 743: 283
|
17 |
Mei R B, Bao L, Huang F, et al. Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations [J]. Mech. Mater., 2018, 125: 110
|
18 |
Ji G L, Li L, Qin F L, et al. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation [J]. J. Alloys Compd., 2017, 695: 2389
|
19 |
Li X, Yang Q B, Fan X Z, et al. Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy [J]. Acta Metall. Sin., 2019, 55(6): 709
doi: 10.11900/0412.1961.2018.00430
|
19 |
李 旭, 杨庆波, 樊祥泽 等. 变形参数对2195 Al-Li合金动态再结晶的影响 [J]. 金属学报, 2019, 55(6): 709
|
20 |
Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization in metallic materials [J]. Rare Met. Mater. Eng., 2019, 48(11): 3764
|
20 |
田宇兴, 刘 成, 曹海龙 等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
|
21 |
Bricknell R H, Edington J W. Deformation characteristics of an Al-6Cu-0.4Zr superplastic alloy [J]. Metall. Trans. A, 1979, 10: 1257
|
22 |
Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation [J]. Acta Mater., 2002, 50(6): 1547
|
23 |
Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng. A, 1996, 205(1-2): 23
|
24 |
Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10A1-0.9C lightweight steel [J]. Mater. Sci. Eng. A, 2020, 772: 138682
|
25 |
Lu H T, Li D Z, Li S Y, et al. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel [J]. Int. J. Miner., Metall. Mater., 2023, 30(4): 734
|
26 |
Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
|
26 |
崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
|
27 |
Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
|
28 |
Zhang C, Zhang L W, Xu Q H, et al. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process [J]. Mater. Sci. Eng. A, 2016, 678: 33
|
29 |
Zheng S J, Yuan X H, Gong X, et al. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel [J]. Metall. Mater. Trans. A, 2019, 50: 2342
|
30 |
Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
|
31 |
Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14(1): 1
|
32 |
Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel [J]. Jpn. J. Appl. Phys., 1944, 15, 22
|
33 |
Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel [J]. Trans. Indian Inst. Met., 2022, 75: 699
|
34 |
Wan P, Kang T, Li F, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel [J]. J. Mater. Res. Technol., 2021, 15: 1059
|
35 |
Li H. Study on dynamic recrystallization kinetics of rare earth magnesium alloys [D]. Chongqing: Southwest University, 2019
|
35 |
李 豪. 稀土镁合金动态再结晶动力学研究 [D]. 重庆: 西南大学, 2019
|
36 |
Zhang J, Wang C Y, Wang H, et al. Research on hot deformation behavior of austenite Fe30Mn9Al0.9C low density steel [J]. J. Iron Steel Res., 2023, 35(4): 434
|
36 |
张 婧, 王存宇, 王 辉 等. 奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究 [J]. 钢铁研究学报, 2023, 35(4): 434
|
37 |
Fan X S. The thermal deformation behavior and casting simulation of advanced low-density fecrnitiai superalloy [D]. Harbin: Harbin Institute of Technology, 2019
|
37 |
范晓烁. 新型低密度FeCrNiTiAl高温合金的热变形行为与铸造过程模拟 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
38 |
Duan G K. Study on hot deformation behavior of low density automobile steel containing medium manganese and high aluminum [D]. Shenyang: Northeastern University, 2022
|
38 |
段国凯. 中锰高铝低密度汽车用钢热变形行为研究 [D]. 沈阳: 东北大学, 2022
|
39 |
Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall., 1978, 26(5): 801
|
40 |
Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
|
40 |
刘 娟, 李居强, 崔振山 等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510
|
41 |
Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng. A, 2005, 410: 152
|
42 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51(9): 2685
|
43 |
Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-the deformed state [J]. Acta Mater., 2004, 52(11): 3239
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|