Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 768-781    DOI: 10.11901/1005.3093.2024.082
  研究论文 本期目录 | 过刊浏览 |
一种低密度钢等温压缩时组织的演化和动态再结晶
孙建1,2(), 李景辉2, 黄贞益2, 章小峰2, 王东生1, 刘述庆1
1.铜陵学院机械工程学院 铜陵 244061
2.安徽工业大学冶金工程学院 马鞍山 243002
Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression
SUN Jian1,2(), LI Jinghui2, HUANG Zhenyi2, ZHANG Xiaofeng2, WANG Dongsheng1, LIU Shuqing1
1.School of Mechanical Engineering, Tongling University, 244061 Tongling, China
2.School of Metallurgical Engineering, Anhui University of Technology, 243002 Ma'anshan, China
引用本文:

孙建, 李景辉, 黄贞益, 章小峰, 王东生, 刘述庆. 一种低密度钢等温压缩时组织的演化和动态再结晶[J]. 材料研究学报, 2024, 38(10): 768-781.
Jian SUN, Jinghui LI, Zhenyi HUANG, Xiaofeng ZHANG, Dongsheng WANG, Shuqing LIU. Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression[J]. Chinese Journal of Materials Research, 2024, 38(10): 768-781.

全文: PDF(24352 KB)   HTML
摘要: 

对一种低密度钢Fe-29.96Mn-9.56Al-1.01C在温度为850~1100℃和应变速率为0.01~10 s-1条件下进行等温压缩,用OM、EBSD和TEM等手段对其表征并构建基于应变补偿的本构方程,研究这种钢在等温压缩过程中的组织演化和动态再结晶以及Z参数对其动态再结晶的影响。结果表明,低温和高应变速率有利于钢中生成细小的动态再结晶晶粒,但是再结晶不充分。应变速率的降低和温度的提高,可使这种钢的动态再结晶较为充分。低密度钢的动态再结晶与Z值有密切的关系。高温和低应变速率的变形条件有利于Z值较低的低密度钢发生再结晶和晶粒的长大。Z值处于中高值的低密度钢,其动态再结晶的晶粒细较小和保留原始带状组织,再结晶程度较低。在低密度钢的热变形过程中晶界取向差呈双峰结构,其主要动态再结晶机制是非连续动态再结晶,在各个热压缩条件下连续动态再结晶和几何动态再结晶的程度都比较低。

关键词 材料科学基础学科Fe-Mn-Al-C低密度钢等温压缩组织演化动态再结晶    
Abstract

A low-density steel Fe-29.96Mn-9.56Al-1.01C was isothermal compressed in a temperature range of 850~1100oC and strain rate range of 0.01~10 s-1, meanwhile, the microstructure evolution and dynamic recrystallization process of the steel were studied by OM, EBSD and TEM. On this basis, the corresponding constitutive equation of the steel is constructed based on strain compensation, and the effect of Z parameter on the dynamic recrystallization of the steel was analyzed. The results show that the conditions of low temperature and high strain rate are beneficial to the formation of fine dynamic recrystallization grains, but the recrystallization is not sufficient. In comparison, the conditions of decreasing strain rate while increasing temperature are more favorable to the completion of the dynamic recrystallization process of the steel. The Z-value has an important relationship with the dynamic recrystallization of the steel, i.e. the deformation condition of high temperature and low strain rate is conducive to the recrystallization and the grain growth for the steel with low Z-value. For the steel with middle and high Z values of, the same condition may be conductive to the formation of fine dynamic recrystallization grains, the retention of the original band-structure, and thereby a low degree of recrystallization. The grain boundary orientation difference of the steel shows a bimodal structure during thermal deformation. The main dynamic recrystallization mechanism of the steel is discontinuous dynamic recrystallization. The degree of continuous dynamic recrystallization and geometric dynamic recrystallization is weak under different thermal compression conditions.

Key wordsfoundational discipline in materials science    Fe-Mn-Al-C    low density steel    isothermal compression    microstructure evolution    dynamic recrystallization
收稿日期: 2024-02-19     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51674004);国家自然科学基金(51805002);安徽省高等学校自然科学研究重点项目(2022AH051760);铜陵学院自然科学研究项目(2023tlxy05);铜陵学院自然科学研究项目(2023tlxy03);铜陵学院自然科学研究项目(2017tlxy23);工程液压机器人安徽普通高校重点实验室(铜陵学院)开放课题资助项目(TLXYCHR-O-21YB03)
通讯作者: 孙建,副教授,sjxa0913@163.com,研究方向为先进钢铁材料组织性能控制
Corresponding author: SUN Jian, Tel: (0562)5882096, E-mail: sjxa0913@163.com
作者简介: 孙 建,男,1988年生,博士
图1  低密度钢在不同变形条件下的真应力-真应变曲线
Strainα / mm-2·N-1nQ / J·mol-1lnA / s-1Strainα / mm-2·N-1nQ / J·mol-1lnA / s-1
0.050.0040516.63415298.8238.600.450.0046174.38355015.5032.12
0.10.0041335.67398082.6036.300.50.0047624.28350333.6631.68
0.150.0041015.29390787.9935.560.550.0048884.20344814.7731.17
0.20.0041335.02384206.6634.900.60.0050324.13342338.4430.92
0.250.0041954.86381160.2834.590.650.0051554.07336804.9830.38
0.30.0042694.74377405.9834.230.70.0052664.01331763.1229.89
0.350.0043594.61368306.2033.370.750.0053264.02336002.2030.28
0.40.0044914.48361460.7932.710.80.0053704.07339840.9230.65
表1  不同应变下的材料参数
AlloyT / oCε˙ / s-1Phasenα / mm-2·N-1Q / kJ·mol-1References
Fe-27Mn-11.5Al-0.95C900~11500.01~10γ + δ3.930.0035294.20[11]
Fe-27.34Mn-8.63Al-1.03C900~11500.01~5γ4.240.0107422.88[25]
Fe-25.14Mn-10Al-1.46C900~11500.01~10γ5.140.0060669.84[34]
Fe-29.96Mn-9.56Al-1.01C850~11000.01~10γ4.01~6.630.0041~0.0054331.76~415.30Present work
表2  低密度钢的相组成、材料常数(n,α)和热变形激活能
图2  低密度钢的真应变ε分别与α,n,Q,lnA的拟合曲线
α / mm-2·N-1nQ / J·mol-1lnA / s-1
X0 = 0.004Y0 = 8.357Z0 = 453241.858U0 = 43.528
X1 = 0.005Y1 = -46.341Z1 = -1.064 × 106U1 = -139.265
X2 = -0.044Y2 = 271.137Z2 = 7.351 × 106U2 = 966.741
X3 = 0.179Y3 = -862.279Z3 = -2.706 × 107U3 = -3501.208
X4 = -0.335Y4 = 1479.257Z4 = 5.110 × 107U4 = 6550.284
X5 = 0.304Y5 = -1295.175Z5 = -4.800 × 107U5 = -6112.333
X6 = -0.110Y6 = 454.902Z6 = 1.787 × 107U6 = 2259.787
表3  材料参数α、n、Q和lnA的第6个多项式系数
图3  在不同热压缩条件下低密度钢的流动应力预测值与实测值的比较
图4  低密度钢在不同变形条件下的流动应力实测值与预测值的对比
ε˙ / s-1lnZ
850oC900oC950oC1000oC1050oC1100oC
0.0138.236.434.733.231.830.4
0.140.538.737.035.534.132.7
142.841.039.337.836.435.0
1045.143.341.640.138.737.3
表4  不同应变速率和变形温度下的lnZ值
图5  低密度钢Z参数值的区分示意图
图6  Z值在Ⅰ区范围内的低密度钢热压缩后的微观组织
图7  Z值在Ⅱ区范围内的低密度钢热压缩后的微观组织
图8  低密度钢的Z值在Ⅲ区范围内热压缩后的微观组织
图9  变形参数与lnZ的关系
图10  动态再结晶临界应变和应力与lnZ的关系
图11  低密度钢热变形组织的反极图(IPF)
图12  低密度钢热变形组织的晶界
图13  低密度钢热变形组织中晶界取向差的分布
图14  Z值不同条件下的动态再结晶的体积分数
图15  低密度钢热变形组织的TEM照片
1 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
2 Gao Z Y, Kang Q F, An X L, et al. Enhanced mechanical properties of a Fe-Mn-Al-C austenitic low-density steel by increasing hot-rolling reduction [J]. Mater. Charact., 2023, 204: 113237
3 Gutierrez-Urrutia I. Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties [J]. ISIJ Int., 2021, 61: 16
doi: 10.2355/isijinternational.ISIJINT-2020-467
4 Zhang G F, Shi H Y, Wang S T, et al. Ultrahigh strength and high ductility lightweight steel achieved by dual nanoprecipitate strengthening and dynamic slip refinement [J]. Mater. Lett., 2023, 330: 133366
5 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
6 Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging [J]. Mater. Sci. Eng. A, 2023, 875: 145109
7 Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels [J]. J. Mater. Res. Technol., 2023
8 Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
doi: 10.11900/0412.1961.2020.00509
8 任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
9 Sun J, Huang Z Y, Li J H, et al. Research progress in heat treatment of Fe-Mn-Al-C system low-density steel [J]. Mater. Rep., 2023, 37(14): 140
9 孙 建, 黄贞益, 李景辉 等. Fe-Mn-Al-C系低密度钢热处理研究进展 [J]. 材料导报, 2023, 37(14): 140
10 Zhang X F, Wu X J, Tang L Z, et al. Cause analysis and control of edge crack of Iow density steel plate with high aluminum content [J]. Ordnance Mater. Sci. Eng., 2020, 43(5): 11
10 章小峰, 武学俊, 唐立志 等. 高铝低密度钢板带边裂成因分析及控制 [J]. 兵器材料科学与工程, 2020, 43(5): 11
11 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low density Fe-Mn-Al-C steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
12 Yang F Q, Song R B, Zhang L F, et al. Hot deformation behavior of Fe-Mn-Al light-weight steel [J]. Procedia Eng., 2014, 81: 456
13 Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel [J]. Metals-Basel. 2022, 12(5): 831
14 Kalantaria A R, Hanzaki A Z, Abediba H R, et al. The high temperature deformation behavior of a Triplex (ferrite+austenite+martensite) low density steel [J]. J. Mater. Res. Technol., 2021, 13: 1388
15 Jiang S Y, Wang Y, Zhang Y Q, et al. Constitutive behavior and microstructural evolution of FeMnSiCrNi shape memory alloy subjected to compressive deformation at high temperatures [J]. Mater. Des., 2019, 182: 108019
16 Zhang H M, Chen G, Chen Q, et al. A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions [J]. J. Alloys Compd., 2018, 743: 283
17 Mei R B, Bao L, Huang F, et al. Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations [J]. Mech. Mater., 2018, 125: 110
18 Ji G L, Li L, Qin F L, et al. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation [J]. J. Alloys Compd., 2017, 695: 2389
19 Li X, Yang Q B, Fan X Z, et al. Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy [J]. Acta Metall. Sin., 2019, 55(6): 709
doi: 10.11900/0412.1961.2018.00430
19 李 旭, 杨庆波, 樊祥泽 等. 变形参数对2195 Al-Li合金动态再结晶的影响 [J]. 金属学报, 2019, 55(6): 709
20 Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization in metallic materials [J]. Rare Met. Mater. Eng., 2019, 48(11): 3764
20 田宇兴, 刘 成, 曹海龙 等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
21 Bricknell R H, Edington J W. Deformation characteristics of an Al-6Cu-0.4Zr superplastic alloy [J]. Metall. Trans. A, 1979, 10: 1257
22 Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation [J]. Acta Mater., 2002, 50(6): 1547
23 Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng. A, 1996, 205(1-2): 23
24 Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10A1-0.9C lightweight steel [J]. Mater. Sci. Eng. A, 2020, 772: 138682
25 Lu H T, Li D Z, Li S Y, et al. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel [J]. Int. J. Miner., Metall. Mater., 2023, 30(4): 734
26 Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
26 崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
27 Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
28 Zhang C, Zhang L W, Xu Q H, et al. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process [J]. Mater. Sci. Eng. A, 2016, 678: 33
29 Zheng S J, Yuan X H, Gong X, et al. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel [J]. Metall. Mater. Trans. A, 2019, 50: 2342
30 Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
31 Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14(1): 1
32 Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel [J]. Jpn. J. Appl. Phys., 1944, 15, 22
33 Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel [J]. Trans. Indian Inst. Met., 2022, 75: 699
34 Wan P, Kang T, Li F, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel [J]. J. Mater. Res. Technol., 2021, 15: 1059
35 Li H. Study on dynamic recrystallization kinetics of rare earth magnesium alloys [D]. Chongqing: Southwest University, 2019
35 李 豪. 稀土镁合金动态再结晶动力学研究 [D]. 重庆: 西南大学, 2019
36 Zhang J, Wang C Y, Wang H, et al. Research on hot deformation behavior of austenite Fe30Mn9Al0.9C low density steel [J]. J. Iron Steel Res., 2023, 35(4): 434
36 张 婧, 王存宇, 王 辉 等. 奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究 [J]. 钢铁研究学报, 2023, 35(4): 434
37 Fan X S. The thermal deformation behavior and casting simulation of advanced low-density fecrnitiai superalloy [D]. Harbin: Harbin Institute of Technology, 2019
37 范晓烁. 新型低密度FeCrNiTiAl高温合金的热变形行为与铸造过程模拟 [D]. 哈尔滨: 哈尔滨工业大学, 2019
38 Duan G K. Study on hot deformation behavior of low density automobile steel containing medium manganese and high aluminum [D]. Shenyang: Northeastern University, 2022
38 段国凯. 中锰高铝低密度汽车用钢热变形行为研究 [D]. 沈阳: 东北大学, 2022
39 Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall., 1978, 26(5): 801
40 Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
40 刘 娟, 李居强, 崔振山 等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510
41 Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng. A, 2005, 410: 152
42 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51(9): 2685
43 Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-the deformed state [J]. Acta Mater., 2004, 52(11): 3239
[1] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[2] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[5] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[7] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[8] 崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
[9] 刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
[10] 刘超, 王鑫, 门月, 张浩宇, 张思倩, 周舸, 陈立佳, 刘海建. Ti-6Al-4V合金热压缩过程中的动态再结晶[J]. 材料研究学报, 2021, 35(8): 583-590.
[11] 孙贺, 陈明, 程明, 王瑞雪, 王旭, 胡小东, 赵红阳, 巨东英. 基于多尺度模型的镁合金薄板温轧再结晶和织构[J]. 材料研究学报, 2021, 35(5): 339-348.
[12] 杨靖丞, 王立忠, 钟志平, 郑英俊. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292.
[13] 王萍, 郭爱民, 侯清宇, 郭云侠, 黄贞益, 光剑锋. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192.
[14] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[15] 程晓农, 桂香, 罗锐, 徐桂芳, 袁志钟, 周宇森, 高佩. 新型奥氏体耐热钢CHDG-A的动态再结晶行为及其动力学模型[J]. 材料研究学报, 2020, 34(8): 611-620.