|
|
基于多尺度模型的镁合金薄板温轧再结晶和织构 |
孙贺1,2, 陈明1,2( ), 程明3, 王瑞雪3, 王旭1,2, 胡小东2, 赵红阳2, 巨东英2,4 |
1.辽宁科技大学机械工程与自动化学院 鞍山 114051 2.辽宁科技大学镁合金铸轧技术研究中心 鞍山 114051 3.中国科学院金属研究所 沈阳 110016 4.埼玉工业大学 日本埼玉 3690293 |
|
A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process |
SUN He1,2, CHEN Ming1,2( ), CHENG Ming3, WANG Ruixue3, WANG Xu1,2, HU Xiaodong2, ZHAO Hongyang2, JU Dongying2,4 |
1.School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China 2.Research Center of Magnesium Alloy Casting and Rolling Technology, University of Science and Technology Liaoning, Anshan 114051, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.Saitama Institute of Technology, Saitama 3690293, Japan |
引用本文:
孙贺, 陈明, 程明, 王瑞雪, 王旭, 胡小东, 赵红阳, 巨东英. 基于多尺度模型的镁合金薄板温轧再结晶和织构[J]. 材料研究学报, 2021, 35(5): 339-348.
He SUN,
Ming CHEN,
Ming CHENG,
Ruixue WANG,
Xu WANG,
Xiaodong HU,
Hongyang ZHAO,
Dongying JU.
A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. Chinese Journal of Materials Research, 2021, 35(5): 339-348.
1 |
Chen S F, Song H W, Zhang S H, et al. Effect of shear deformation on plasticity, recrystallization mechanism and texture evolution of Mg-3Al-1Zn alloy sheet: Experiment and coupled finite element-VPSC simulation [J]. J. Alloys. Compd., 2019, 805: 138
|
2 |
Lebensohn R A, Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys [J]. Acta. Metall. Mater., 1993, 41(9): 2611
|
3 |
Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automata [J]. Scr. Mater., 2003, 38: 405
|
4 |
Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta. Metall., 1981, 29: 1865
|
5 |
Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization [J]. Acta. Mater., 2012, 60(18): 6390
|
6 |
Tang T, Zhou G W,LI Z H, et al. A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method andits application to light weight alloys [J]. Int. J. Plast., 2019, 116: 159
|
7 |
Zhou G W, Li Z H, Li D Y,et al. Misorientation development in continuous dynamic recrystallization of AZ31B alloy sheet and polycrystal plasticity simulation [J]. Mater. Sci. Eng., A, 2018, 730: 438
|
8 |
Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater., 2001, 49: 1199
|
9 |
Shi T, Yu K, Li W X, et al. Hot-compression constitutive relation of as-cast AZ31 magnesium alloy [J]. Trans. Nonferrous. Met. Soc. China., 2007, 17: 336
|
10 |
Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures [J]. J. Mater. Process. Technol., 1998, 80: 513
|
11 |
Wang Z T, Zhang S H, Qi G X, et al. Constitutive equation for hot deformation of AZ31 magnesium alloy [J].Chin. J. Nonferrous. Met., 2008, 18(11): 1977
|
11 |
王忠堂, 张士宏, 齐广霞等. AZ31镁合金热变形本构方程 [J]. 中国有色金属学报, 2008, 18(11): 1977
|
12 |
Molinari A, Tóth L. A self consistent viscoplastic model by finite element results [J]. Acta. Metall. Mater., 1994, 42(7): 2453
|
13 |
Lebensohn R A, Tomé C. A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals [J]. Mater. Sci. Eng., A, 1994, 175(1): 71
|
14 |
Choi S H, Kim D H, Seong B S. Simulation of strain-softening behaviors in an AZ31 Mg alloy showing distinct twin-induced reorientation before a peak stress [J]. Met. Mater. Int., 2009, 15: 239
|
15 |
Lin J B, Ren W J, Wang X Y. Research progress of structural evolution crystal plastic mechanical model of Magnesium alloys [J]. Material. Rev., 2016, 30(1): 102
|
15 |
林金保, 任伟杰, 王心怡. 镁合金织构演化晶体塑性力学模型的研究进展 [J]. 材料导报, 2016, 30(1): 102
|
16 |
Pandey A, Kabirian F, Hwang J H, et al. Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations [J]. Int. J. Plast., 2015, 68: 111
|
17 |
Beyerlein I J, Tomé C. A dislocation-based constitutive law for pure Zr including temperature effects [J]. Int. J. Plast., 2008, 24(5): 867
|
18 |
Capolungo L, Beyerlein I J, Kaschner G C, et al. On the interaction between slip dislocations and twins in HCP Zr [J]. Mater. Sci. Eng,. A, 2009, 513: 42
|
19 |
Yu H H, Xin Y C, Liu Q, et al. Hall-Petch relationship in Mg alloys [J]. Mater. Sci. Eng,. A, 2018, 34(2): 248
|
20 |
Ma Q, Li B, Whittington W R, et al. Texture evolution during dynamic recrystallization in a magnesium alloy at 450℃ [J]. Acta. Metall., 2014, 67: 102
|
21 |
Niu Y X, Le Q C, Ning F K, et al. Strain induced dynamic recrystallization nucleation of ZA21 magnesium alloy during compression process at low and medium temperatures [J]. J. Mater. Res. Technol., 2020, 9(1): 340
|
22 |
He Y, Zhang L W, Niu J, et al. Simulation of dynamic recrystallization process by cellular automata method [J].
|
22 |
Mater T.. Heat. Treat., 2005, 26(4): 120(何燕, 张立文, 牛静等. 元胞自动机方法对动态再结晶过程的模拟 [J]. 材料热处理学报, 2005, 26(4): 120
|
23 |
Chen X W, WANG J Y, Yang X Q, et al. Thermal deformation behavior and dislocation density evolution of Cr8 alloy steel [J].
|
23 |
Jilin J.. U.: Techno. Ed., 2020, 50: 91(陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报: 工学版, 2020, 50: 91
|
24 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta. Mater., 2003, 51: 2685
|
25 |
Chen M, Hu X D, Zhao H Y, et al. Recrystallization microstructure prediction of a hot-rolled AZ31 magnesium alloy sheet by using the cellular automata method [J]. Math. Probl. Eng., Article ID1484098, Volume 2019
|
26 |
Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta. Mater., 2001, 49(16): 3163
|
27 |
Lu Y, Zhang L W, Deng X H, et al. Cellular automata simulation of dynamic recrystallization of pure copper [J]. Acta. Metall. Sin., 2008, 44(3): 292
|
27 |
卢瑜, 张立文, 邓小虎等. 纯铜动态再结晶过程的元胞自动机模拟 [J]. 金属学报, 2008, 44(3): 292
|
28 |
Zhou G W. Experimental and theoretical research on thermoplastic deformation mechanism and forming limit of AZ31B magnesium alloy sheet [D]. Shanghai: Shanghai Jiao Tong University, 2016(周国伟. AZ31B镁合金板材温热塑性变形机制与成形极限的实验与理论研究 [D]. 上海: 上海交通大学, 2016
|
29 |
Zhou G W, Jain Mukesh K., Wu P D, et al. Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures: How deformation mechanisms evolve [J]. Int. J. Plast., 2016, (79): 19
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|