Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 339-348    DOI: 10.11901/1005.3093.2020.372
  研究论文 本期目录 | 过刊浏览 |
基于多尺度模型的镁合金薄板温轧再结晶和织构
孙贺1,2, 陈明1,2(), 程明3, 王瑞雪3, 王旭1,2, 胡小东2, 赵红阳2, 巨东英2,4
1.辽宁科技大学机械工程与自动化学院 鞍山 114051
2.辽宁科技大学镁合金铸轧技术研究中心 鞍山 114051
3.中国科学院金属研究所 沈阳 110016
4.埼玉工业大学 日本埼玉 3690293
A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process
SUN He1,2, CHEN Ming1,2(), CHENG Ming3, WANG Ruixue3, WANG Xu1,2, HU Xiaodong2, ZHAO Hongyang2, JU Dongying2,4
1.School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
2.Research Center of Magnesium Alloy Casting and Rolling Technology, University of Science and Technology Liaoning, Anshan 114051, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Saitama Institute of Technology, Saitama 3690293, Japan
引用本文:

孙贺, 陈明, 程明, 王瑞雪, 王旭, 胡小东, 赵红阳, 巨东英. 基于多尺度模型的镁合金薄板温轧再结晶和织构[J]. 材料研究学报, 2021, 35(5): 339-348.
He SUN, Ming CHEN, Ming CHENG, Ruixue WANG, Xu WANG, Xiaodong HU, Hongyang ZHAO, Dongying JU. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. Chinese Journal of Materials Research, 2021, 35(5): 339-348.

全文: PDF(11092 KB)   HTML
摘要: 

建立多尺度模型阐明了镁合金薄板再结晶和织构演变机制。先用有限元法数值计算异步温轧工艺过程,得到了等效塑性应变、应变速率等结果,并以此作为初始边界条件引入基于位错密度演化的硬化方程,得到了VPSC(Visco-Plastic Self-Consistent)粘塑性自洽模型、实现了CA(Cellular Automata)元胞自动机模型的耦合计算,得到了宏观尺度上的应力与应变、微观尺度上的动态再结晶微观组织和变形织构。研究了异步温轧过程中应变速率对动态再结晶微观组织的影响,并用电子背散射衍射技术(EBSD)实验验证了在不同冷却条件下温轧AZ31镁合金薄板的微观组织。模拟结果表明:适当提高应变速率可细化晶粒;轧制后空冷处理的板材基面织构的弱化程度更高,有利于提高沿板材厚度方向的变形能力。

关键词 金属材料多尺度模型异步温轧位错密度粘塑性自洽模型动态再结晶    
Abstract

The mechanism of recrystallization and texture evolution of Mg-alloy sheet was elucidated by means of an established multi-scale calculation model. First of all, the numerical calculation of asymmetric warm-rolling process was carried out by using finite element method, and the equivalent plastic strain and strain rate were obtained as the reference boundary parameters conditions. By introducing the hardening equation based on dislocation density evolution, the coupling calculation of the viscoplastic self-consistent (VPSC) model and cellular automata (CA) model were achieved. The stress and strain, as well as the dynamic recrystallization microstructure and deformation texture on the microscopic scale were obtained. Based on this method, the influence of strain rate on dynamic recrystallization microstructure variation during asymmetric warm-rolling was calculated. The microstructure of warm-rolled AZ31 Mg-alloy sheet prepared by different cooling conditions was experimentally verified by electron back-scattered diffraction (EBSD). The simulation results show that the grain can be refined by increasing the strain rate appropriately and the experimental results show that the weakening degree of the basal texture of the alloy sheet by air cooling after rolling is higher, which is beneficial to the enhancement of the deformation ability of the Mg-alloy sheet along its thickness.

Key wordsmetallic materials    multi-scale model    asymmetric warm-rolling    dislocation density    Visco-Plastic Self-Consistent model    dynamic recrystallization
收稿日期: 2020-09-04     
ZTFLH:  TG146  
基金资助:国家自然科学基金青年基金(51305188);辽宁省科技厅博士启动基金(20170520313)
作者简介: 孙贺,男,1996年生,硕士生
图1  实验用六辊温轧机
Density/kg·m-3Temperature/KThermal radiation

Young's modulus

/MPa

Poisson's ratio

Specific heat

/J·(103 kg·℃)-1

17405530.25378600.3081.18×106
表1  AZ31镁合金有限元模拟的材料参数
图2  有限元模拟计算流程
图3  有限元-元胞自动机法的示意图
图4  等效塑性应变取点位置的示意图
图5  宏观塑性应变-屈服应力曲线
图6  滑移孪生相对活动

Temperature

/K

Deformation mode

Voce parameter

/Mpa

τ0τ1θ0θ1
553Basal<a>slip10123525
Prismatic<a>slip5085010
Pyramidal<c+a>slip11525705
Compression twinning1205000
Tensile twinning551000
表2  粘塑性自洽模型的Voce硬化参数
Temperature/KQact/kJ·mol-1Qb/kJ·mol-1b/mμ0/N·m-2δDob/m3·s-1
553132.44923.21×10-101.486×10105.0×10-12
表3  AZ31镁合金动态再结晶模拟的物性参数
图7  基于位错密度演化的VPSC-DRX模型计算流程图
图8  AZ31镁合金再结晶模拟不同应变的微观组织
图9  AZ31镁合金再结晶模拟不同应变速率时的微观组织
图10  板材轧制方向的示意图
图11  不同处理的AZ31镁合金薄板的微观组织
图12  AZ31镁合金薄板取向差角分布
图13  不同处理方式AZ31镁合金薄板的极图
1 Chen S F, Song H W, Zhang S H, et al. Effect of shear deformation on plasticity, recrystallization mechanism and texture evolution of Mg-3Al-1Zn alloy sheet: Experiment and coupled finite element-VPSC simulation [J]. J. Alloys. Compd., 2019, 805: 138
2 Lebensohn R A, Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys [J]. Acta. Metall. Mater., 1993, 41(9): 2611
3 Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automata [J]. Scr. Mater., 2003, 38: 405
4 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta. Metall., 1981, 29: 1865
5 Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization [J]. Acta. Mater., 2012, 60(18): 6390
6 Tang T, Zhou G W,LI Z H, et al. A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method andits application to light weight alloys [J]. Int. J. Plast., 2019, 116: 159
7 Zhou G W, Li Z H, Li D Y,et al. Misorientation development in continuous dynamic recrystallization of AZ31B alloy sheet and polycrystal plasticity simulation [J]. Mater. Sci. Eng., A, 2018, 730: 438
8 Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater., 2001, 49: 1199
9 Shi T, Yu K, Li W X, et al. Hot-compression constitutive relation of as-cast AZ31 magnesium alloy [J]. Trans. Nonferrous. Met. Soc. China., 2007, 17: 336
10 Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures [J]. J. Mater. Process. Technol., 1998, 80: 513
11 Wang Z T, Zhang S H, Qi G X, et al. Constitutive equation for hot deformation of AZ31 magnesium alloy [J].Chin. J. Nonferrous. Met., 2008, 18(11): 1977
11 王忠堂, 张士宏, 齐广霞等. AZ31镁合金热变形本构方程 [J]. 中国有色金属学报, 2008, 18(11): 1977
12 Molinari A, Tóth L. A self consistent viscoplastic model by finite element results [J]. Acta. Metall. Mater., 1994, 42(7): 2453
13 Lebensohn R A, Tomé C. A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals [J]. Mater. Sci. Eng., A, 1994, 175(1): 71
14 Choi S H, Kim D H, Seong B S. Simulation of strain-softening behaviors in an AZ31 Mg alloy showing distinct twin-induced reorientation before a peak stress [J]. Met. Mater. Int., 2009, 15: 239
15 Lin J B, Ren W J, Wang X Y. Research progress of structural evolution crystal plastic mechanical model of Magnesium alloys [J]. Material. Rev., 2016, 30(1): 102
15 林金保, 任伟杰, 王心怡. 镁合金织构演化晶体塑性力学模型的研究进展 [J]. 材料导报, 2016, 30(1): 102
16 Pandey A, Kabirian F, Hwang J H, et al. Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations [J]. Int. J. Plast., 2015, 68: 111
17 Beyerlein I J, Tomé C. A dislocation-based constitutive law for pure Zr including temperature effects [J]. Int. J. Plast., 2008, 24(5): 867
18 Capolungo L, Beyerlein I J, Kaschner G C, et al. On the interaction between slip dislocations and twins in HCP Zr [J]. Mater. Sci. Eng,. A, 2009, 513: 42
19 Yu H H, Xin Y C, Liu Q, et al. Hall-Petch relationship in Mg alloys [J]. Mater. Sci. Eng,. A, 2018, 34(2): 248
20 Ma Q, Li B, Whittington W R, et al. Texture evolution during dynamic recrystallization in a magnesium alloy at 450℃ [J]. Acta. Metall., 2014, 67: 102
21 Niu Y X, Le Q C, Ning F K, et al. Strain induced dynamic recrystallization nucleation of ZA21 magnesium alloy during compression process at low and medium temperatures [J]. J. Mater. Res. Technol., 2020, 9(1): 340
22 He Y, Zhang L W, Niu J, et al. Simulation of dynamic recrystallization process by cellular automata method [J].
22 Mater T.. Heat. Treat., 2005, 26(4): 120(何燕, 张立文, 牛静等. 元胞自动机方法对动态再结晶过程的模拟 [J]. 材料热处理学报, 2005, 26(4): 120
23 Chen X W, WANG J Y, Yang X Q, et al. Thermal deformation behavior and dislocation density evolution of Cr8 alloy steel [J].
23 Jilin J.. U.: Techno. Ed., 2020, 50: 91(陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报: 工学版, 2020, 50: 91
24 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta. Mater., 2003, 51: 2685
25 Chen M, Hu X D, Zhao H Y, et al. Recrystallization microstructure prediction of a hot-rolled AZ31 magnesium alloy sheet by using the cellular automata method [J]. Math. Probl. Eng., Article ID1484098, Volume 2019
26 Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta. Mater., 2001, 49(16): 3163
27 Lu Y, Zhang L W, Deng X H, et al. Cellular automata simulation of dynamic recrystallization of pure copper [J]. Acta. Metall. Sin., 2008, 44(3): 292
27 卢瑜, 张立文, 邓小虎等. 纯铜动态再结晶过程的元胞自动机模拟 [J]. 金属学报, 2008, 44(3): 292
28 Zhou G W. Experimental and theoretical research on thermoplastic deformation mechanism and forming limit of AZ31B magnesium alloy sheet [D]. Shanghai: Shanghai Jiao Tong University, 2016(周国伟. AZ31B镁合金板材温热塑性变形机制与成形极限的实验与理论研究 [D]. 上海: 上海交通大学, 2016
29 Zhou G W, Jain Mukesh K., Wu P D, et al. Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures: How deformation mechanisms evolve [J]. Int. J. Plast., 2016, (79): 19
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.