Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 184-192    DOI: 10.11901/1005.3093.2020.239
  研究论文 本期目录 | 过刊浏览 |
时效态Fe-Mn-Al-C钢的性能和变形机制
王萍(), 郭爱民, 侯清宇, 郭云侠, 黄贞益(), 光剑锋
安徽工业大学冶金工程学院 马鞍山 243000
Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel
WANG Ping(), GUO Aimin, HOU Qingyu, GUO Yunxia, HUANG Zhenyi(), GUANG Jianfeng
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
引用本文:

王萍, 郭爱民, 侯清宇, 郭云侠, 黄贞益, 光剑锋. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192.
Ping WANG, Aimin GUO, Qingyu HOU, Yunxia GUO, Zhenyi HUANG, Jianfeng GUANG. Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192.

全文: PDF(18031 KB)   HTML
摘要: 

采用OM、SEM、XRD、EBSD以及TEM等手段分析时效温度对Fe-30Mn-9Al-0.9C-0.45Mo钢中奥氏体的晶粒尺寸和力学性能的影响。结果表明:时效处理对Fe-30Mn-9Al-0.9C-0.45Mo钢的组织和性能有较大的影响。在450℃时效的实验钢其抗拉强度为863 MPa、断后伸长率为56.1%、强塑积达到48.4 GPa·%,比固溶态有显著的提高;在500℃时效后钢中κ-碳化物的析出量增加,呈点状分布,且奥氏体晶粒明显长大,屈服强度和抗拉强度都有所提高。在550℃时效过程中发生DO3→B2连续转变,钢的屈服强度提高但是塑性明显降低。拉伸变形后的实验钢表现出平面滑移特征:在钢中可见明显的高密度位错墙和微带结构。

关键词 金属材料Fe-Mn-Al-C钢时效温度奥氏体晶粒微带    
Abstract

The effect of aging temperature on austenite grain size and mechanical properties of Fe-30Mn-9Al-0.9C-0.45Mo steel were investigated by OM, SEM, XRD, EBSD and TEM. The results show that the aging treatment has a great influence on the microstructure and properties of Fe-30Mn-9Al-0.9C-0.45Mo steel. After aging treatment at 450℃ the tensile strength of the steel is 863 MPa, the elongation after fracture is 56.1%, and the strong plastic product is 48.4 GPa·%, indicating a significant improvement compared with the solid solution treated ones; After aging temperature at 500℃ the amount of the dot-shaped κ-carbide precipitates increases , the austenite grains grow significantly with the increase of ageing temperature and the yield strength and tensile strength increase. During the aging process at 550℃ DO3→B2 continuous transformation occurred, and the yield strength of the steel increased, but the plasticity decreased significantly. After tensile deformation high density dislocation wall and microstrip structure can be observed, which are plane slip characteristics.

Key wordsmetallic materials    Fe-Mn-Al-C steel    aging temperature    austenite grain    microband
收稿日期: 2020-06-17     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51674004)
作者简介: 黄贞益,教授,huangzhenyi@ahut.edu.cn,研究方向为新一代钢铁材料开发及性能控制
王萍,女,1967年生,副教授
图1  在不同温度时效12 h后实验钢的显微组织
图2  试验钢不同温度时效后奥氏体晶粒尺寸分布图
图3  EBSD表征在不同温度时效后实验钢的相分布
图4  不同时效温度下奥氏体、铁素体质量分数和XRD谱
图5  550℃时效后钢中铁素体析出相形貌和XRD谱
Temperature/℃Rm/MPaRp0.2/MPaElongation/%Rm×Elongation/GPa·%
Solid solution1155---
45086356756.148.4
50087357555.048.0
55086671310.18.7
表1  实验钢在不同温度时效12 h后的力学性能
图6  时效钢的工程应力-应变曲线和力学性能随时效温度的变化
图7  试验钢拉伸断口形貌
图8  实验钢在不同温度时效后的KAM图
Aging temperatureKAM distributionAverageDislocation
/℃0°~1°1°~2°2°~3°3°~4°4°~5°KAM/°density/m-2
4500.1440.3050.5830.6270.3090.2476.12×1015
5000.0100.1400.6110.7350.4650.3921.95×1016
5500.0210.4830.6010.4580.1290.2125.43×1015
表2  实验钢拉伸变形后的KAM分布、平均KAM值以及位错密度
图9  450℃时效钢拉伸变形后位错结构的TEM像
1 Yang Q, Cong Y, Wang J F, et al. State of knowledge on lightweight steels (Part II)——Ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels [J]. Bao-Steel Technol., 2015, (4): 1
1 杨旗, 丛郁, 王俊峰等. 轻质钢的研究进展(二)——铁素体-奥氏体双相轻质钢和奥氏体轻质钢 [J]. 宝钢技术, 2015, (4): 1
2 Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels [J]. Mater. Rep., 2019, 33: 3979
2 章小峰, 李家星, 万亚雄等. 低密度钢中有序析出相的研究进展 [J]. 材料导报, 2019, 33: 3979
3 Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng. A, 2017, 689: 269
4 Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
5 Zheng W S, Lu X G, Mao H H, et al. Thermodynamic modeling of the Al-C-Mn system supported by ab initio calculations [J]. Calphad, 2018, 60: 222
6 Song W W, Zhang W, von Appen J, et al. κ-Phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
7 Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng. A, 2016, 652: 69
8 Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility [J]. Chin. J. Mater. Res., 2019, 33: 927
8 张喜亮, 侯华峰, 刘涛等. 一种新型高强塑积异质冷轧中锰钢的力学性能 [J]. 材料研究学报, 2019, 33: 927
9 Gao X T, Zhao A M, Zhang Y. Mechanical property and precipitation of 900 MPa grade hot-rolled TRIP steel [J]. Chin. J. Mater. Res., 2018, 32: 662
9 高绪涛, 赵爱民, 张元. 900 MPa级热轧TRIP钢的性能特征 [J]. 材料研究学报, 2018, 32: 662
10 Yang F Q, Song R B, Sun T, et al. Microstructure and mechanical proper-ties of Fe-Mn-Al light-weight high strength steel [J]. Acta Metall. Sin., 2014, 50: 897
10 杨富强, 宋仁伯, 孙挺等. Fe-Mn-Al轻质高强钢组织和力学性能研究 [J]. 金属学报, 2014, 50: 897
11 Zambrano O A. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: effect of temperature, grain size, and variations in compositions [J]. J. Eng. Mater. Technol., 2016, 138: 041010
12 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
13 Lee S I, Cho Y, Hwang B. Effect of grain size on the tensile properties of an austenitic high-manganese steel [J]. Korean J. Mater. Res., 2016, 266: 325
14 Saha R, Ueji R, Tsuji N. Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 813
15 Tian Y Z, Bai Y, Chen M C, et al. Enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure [J]. Metall. Mater. Trans., 2014, 45A: 5300
16 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng. A, 2018, 723: 212
17 Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng. A, 2009, 508: 234
18 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng. A, 2008, 496: 417
19 Peng X, Zhu D Y, Hu Z M, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition [J]. Mater. Des., 2013, 45: 518
20 Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel [J]. Scr. Mater., 2014, 92: 19
21 Shterner V, Timokhina I B, Beladi H. The correlation between stacking fault energy and the work hardening Behaviour of High-Mn twinning induced plasticity steel tested at various temperatures [J]. Adv. Mater. Res., 2014, 922: 676
22 Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel [J]. JOM, 2014, 66: 1828
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.