|
|
时效态Fe-Mn-Al-C钢的性能和变形机制 |
王萍( ), 郭爱民, 侯清宇, 郭云侠, 黄贞益( ), 光剑锋 |
安徽工业大学冶金工程学院 马鞍山 243000 |
|
Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel |
WANG Ping( ), GUO Aimin, HOU Qingyu, GUO Yunxia, HUANG Zhenyi( ), GUANG Jianfeng |
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China |
引用本文:
王萍, 郭爱民, 侯清宇, 郭云侠, 黄贞益, 光剑锋. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192.
Ping WANG,
Aimin GUO,
Qingyu HOU,
Yunxia GUO,
Zhenyi HUANG,
Jianfeng GUANG.
Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192.
1 |
Yang Q, Cong Y, Wang J F, et al. State of knowledge on lightweight steels (Part II)——Ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels [J]. Bao-Steel Technol., 2015, (4): 1
|
1 |
杨旗, 丛郁, 王俊峰等. 轻质钢的研究进展(二)——铁素体-奥氏体双相轻质钢和奥氏体轻质钢 [J]. 宝钢技术, 2015, (4): 1
|
2 |
Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels [J]. Mater. Rep., 2019, 33: 3979
|
2 |
章小峰, 李家星, 万亚雄等. 低密度钢中有序析出相的研究进展 [J]. 材料导报, 2019, 33: 3979
|
3 |
Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation [J]. Mater. Sci. Eng. A, 2017, 689: 269
|
4 |
Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
|
5 |
Zheng W S, Lu X G, Mao H H, et al. Thermodynamic modeling of the Al-C-Mn system supported by ab initio calculations [J]. Calphad, 2018, 60: 222
|
6 |
Song W W, Zhang W, von Appen J, et al. κ-Phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
|
7 |
Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng. A, 2016, 652: 69
|
8 |
Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility [J]. Chin. J. Mater. Res., 2019, 33: 927
|
8 |
张喜亮, 侯华峰, 刘涛等. 一种新型高强塑积异质冷轧中锰钢的力学性能 [J]. 材料研究学报, 2019, 33: 927
|
9 |
Gao X T, Zhao A M, Zhang Y. Mechanical property and precipitation of 900 MPa grade hot-rolled TRIP steel [J]. Chin. J. Mater. Res., 2018, 32: 662
|
9 |
高绪涛, 赵爱民, 张元. 900 MPa级热轧TRIP钢的性能特征 [J]. 材料研究学报, 2018, 32: 662
|
10 |
Yang F Q, Song R B, Sun T, et al. Microstructure and mechanical proper-ties of Fe-Mn-Al light-weight high strength steel [J]. Acta Metall. Sin., 2014, 50: 897
|
10 |
杨富强, 宋仁伯, 孙挺等. Fe-Mn-Al轻质高强钢组织和力学性能研究 [J]. 金属学报, 2014, 50: 897
|
11 |
Zambrano O A. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: effect of temperature, grain size, and variations in compositions [J]. J. Eng. Mater. Technol., 2016, 138: 041010
|
12 |
Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
|
13 |
Lee S I, Cho Y, Hwang B. Effect of grain size on the tensile properties of an austenitic high-manganese steel [J]. Korean J. Mater. Res., 2016, 266: 325
|
14 |
Saha R, Ueji R, Tsuji N. Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel [J]. Scr. Mater., 2013, 68: 813
|
15 |
Tian Y Z, Bai Y, Chen M C, et al. Enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure [J]. Metall. Mater. Trans., 2014, 45A: 5300
|
16 |
Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng. A, 2018, 723: 212
|
17 |
Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng. A, 2009, 508: 234
|
18 |
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng. A, 2008, 496: 417
|
19 |
Peng X, Zhu D Y, Hu Z M, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition [J]. Mater. Des., 2013, 45: 518
|
20 |
Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel [J]. Scr. Mater., 2014, 92: 19
|
21 |
Shterner V, Timokhina I B, Beladi H. The correlation between stacking fault energy and the work hardening Behaviour of High-Mn twinning induced plasticity steel tested at various temperatures [J]. Adv. Mater. Res., 2014, 922: 676
|
22 |
Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel [J]. JOM, 2014, 66: 1828
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|