Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 782-790    DOI: 10.11901/1005.3093.2024.250
  研究论文 本期目录 | 过刊浏览 |
进给速度对冷辗扩GCr15轴承套圈硬度的影响
苏勇1, 刘灿1, 张宏伟2, 于兴福3(), 郝天赐4
1.沈阳化工大学机械与动力工程学院 沈阳 110142
2.民航东北地区空中交通管理局气象中心 沈阳 110169
3.沈阳工业大学机械工程学院 沈阳 110870
4.沈阳工业大学材料科学与工程学院 沈阳 110870
Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring
SU Yong1, LIU Can1, ZHANG Hongwei2, YU Xingfu3(), HAO Tianci4
1.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Meteorological Center of Air Traffic Administration in Northeast China, Shenyang 110169, China
3.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

苏勇, 刘灿, 张宏伟, 于兴福, 郝天赐. 进给速度对冷辗扩GCr15轴承套圈硬度的影响[J]. 材料研究学报, 2024, 38(10): 782-790.
Yong SU, Can LIU, Hongwei ZHANG, Xingfu YU, Tianci HAO. Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring[J]. Chinese Journal of Materials Research, 2024, 38(10): 782-790.

全文: PDF(13110 KB)   HTML
摘要: 

对GCr15轴承钢深沟球轴承套圈进行冷辗扩实验和模拟,用有限元仿真、微观组织观察、残余应力和力学性能测试等手段研究了进给速度对其残余应力的分布、碳化物的析出行为和硬度的影响。结果表明,进给速度为0.50 mm/s时冷辗扩模拟得到套圈外表面残余压应力均值为-170.49 MPa,与实验测定值-160.10 MPa只差6.49%,表明这种模拟的可靠性。随着进给速度的提高(为0.70或0.90 mm/s)套圈变形速率随之提高,心部与表层之间的相对变形量和残余应力增大;套圈内表层碳化物分布均匀,颗粒细小,沟槽处碳化物的平均尺寸最小,分布最密集。套圈的硬度沿径向变化,内表面的硬度比外表面的高,沟槽处的硬度最大。

关键词 金属材料GCr15冷辗扩数值模拟轴承套圈    
Abstract

Herein, the effect of deformation rate on the residual stress distribution, carbide precipitation behavior and hardness of the cold rolled expanding deep groove ball bearing rings of GCr15 steel were studied by means of microstructure observation, residual stress and mechanical property measurements as well as finite element simulation. According to the finite element simulation with three different feed rates of 0.50, 0.70 and 0.90 mm/s respectively for the cold rolling process, it follows that the mean residual compressive stress on the outer surface of the bearing ring is -170.49 MPa when the feed rate is 0.50 mm/s, which is only 6.49% different from the experimental result of -160.10 MPa, indicating the reliability of the simulation. With the increase of feed rate, the deformation rate of the ring increases, the relative deformation between the core and the surface layer increases, and the residual stress also increases. The carbides in the inner surface layer of the ring are uniformly distributed and fine. The distribution of carbides is the densest and their average size is the smallest and their average size is the smallest in the groove. The hardness of the ring varies along the radial direction, the inner surface has greater hardness than the outer surface, and the groove position has the maximum hardness.

Key wordsmetallic materials    GCr15    cold rolling    numerical simulation    bearing ring
收稿日期: 2024-05-31     
ZTFLH:  TG335.12  
基金资助:辽宁省教育厅项目(LJKM20220770)
通讯作者: 于兴福,教授,yuxingfu@163.com,研究方向为耐热钢、高温合金及激光冲击强化
Corresponding author: YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com
作者简介: 苏 勇,男,1979年生,博士,副教授
ElementCSiMnPSCrFe
Content1.0500.3300.3400.0200.0231.610Bal.
表1  GCr15轴承钢的化学成分
图1  GCr15轴承套圈的尺寸
图2  冷辗扩加工装配图
图3  GCr15轴承钢的应力-应变曲线
SchemesSpeed and time in different cold rolling stages (mm/s × s)
A0.50 × 12.00.25 × 10.00.12 × 8.50.06 × 2.80.01 × 1.20 × 10.0
B0.70 × 8.00.30 × 8.00.16 × 7.00.08 × 6.00.04 × 2.50 × 10.0
C0.90 × 6.00.40 × 6.00.20 × 5.50.12 × 5.00.05 × 4.00 × 10.0
表2  冷辗扩加工的进给速度
图4  残余应力和硬度测量及微观组织观察点的位置示意图
图5  进给速度不同的冷辗扩GCr15轴承套圈的初始应力和残余应力的模拟结果
图6  进给速度不同的冷辗扩GCr15轴承套圈的横截面等效塑性应变和残余应力的模拟结果
图7  在进给速度不同的条件下图4中冷辗扩GCr15轴承套圈各测量点的残余应力
图8  GCr15轴承套圈冷辗扩前后不同位置的显微组织
图9  GCr15轴承套圈冷辗扩前后不同位置的碳化物尺寸和分布
图10  冷辗扩GCr15轴承套圈不同位置的硬度
图11  冷辗扩GCr15轴承套圈不同区域的碳化物分布示意图
图12  冷辗扩GCr15轴承套圈的残余应力形成示意图
1 Zhang X F, Li Z, Cui X. Numerical simulation on heat treatment deformation of GCr15 bearing rings [J]. Bearing, 2020, (11): 45
1 张学飞, 李 卓, 崔 晓. GCr15轴承套圈热处理变形数值模拟 [J]. 轴承, 2020, (11): 45
2 Zhang Y J, Min Y A, Liu X J, et al. Microstructure distribution characteristics and carbide homogeneity of GCr15 bearing ring [J]. Heat Treat. Met., 2019, 44(12): 6
2 张艳君, 闵永安, 刘湘江 等. GCr15轴承套圈组织分布特点及碳化物均匀性 [J]. 金属热处理, 2019, 44(12): 6
3 Liu Z H, Li Y H, Liu Y, et al. Carbide evolution behavior of GCr15 bearing steel during aging process [J]. Chin. J. Mater. Res., 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
3 刘震寰, 李勇翰, 刘 洋 等. GCr15轴承钢时效过程碳化物的演化行为 [J]. 材料研究学报, 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
4 Lu B H, Wei W T, Mao H J, et al. Effect of cold ring rolling on the wear resistance of GCr15 bearing steel after quenching and tempering [J]. Metals, 2019, 9(6): 647
5 Yang Z H, Lu X H, Lan J, et al. Research progress in multi-scale numerical simulation of ring rolling [J]. J. Plast. Eng., 2022, 29(3): 1
5 杨智皓, 路晓辉, 兰 箭 等. 环件轧制多尺度数值模拟研究进展 [J]. 塑性工程学报, 2022, 29(3): 1
doi: 10.3969/j.issn.1007-2012.2022.03.001
6 Hua L, Qian D S. Ring rolling forming theory and technology for bearing [J]. J. Mech. Eng., 2014, 50(16): 70
6 华 林, 钱东升. 轴承环轧制成形理论和技术 [J]. 机械工程学报, 2014, 50(16): 70
7 Liu Y Y. Finite element numerical simulation of large L-shape ring rolling process [D]. Dalian: Dalian University of Technology, 2022
7 刘永云. 大型L形截面环件轧制过程的有限元数值模拟 [D]. 大连: 大连理工大学, 2022
8 Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling [J]. J. Mater. Process. Technol., 2009, 209(11): 5087
9 Luo Z, Hua L, Zhou Y Q, et al. Simulation of ring rolling process using explicit finite element method [J]. J. Plast. Eng., 2004, 11(1): 68
9 罗 洲, 华 林, 周勇强 等. 环件轧制过程的显式有限元模拟分析 [J]. 塑性工程学报, 2004, 11(1): 68
10 Wang X K, Dong J, Hua L, et al. Visual measurement method of geometric state of hot ring rolling process based on deep learning [J]. J. Plast. Eng., 2022, 29(11): 8
10 汪小凯, 董 杰, 华 林 等. 基于深度学习的热态环件轧制过程几何状态视觉测量方法 [J]. 塑性工程学报, 2022, 29(11): 8
doi: 10.3969/j.issn.1007-2012.2022.11.002
11 Yu B, Luo X G, Zhang H T, et al. Relevant analysis of residual stress of cold rolling bearing ring and residual stress [J]. J. Jiamusi Univ. (Nat. Sci. Ed.), 2019, 37(1): 86
11 俞 蓓, 罗贤国, 张海涛 等. 冷辗压轴承环残余应力与淬回火变形的相关性探析 [J]. 佳木斯大学学报(自然科学版), 2019, 37(1): 86
12 Lan J, Feng S G, Hua L. The residual stress of the cold rolled bearing race [J]. Procedia Eng., 2017, 207: 1254
13 Xu J, Hu H. Research of evolution law of bearing ring cold-rolled residual stress under diverse deflection [J]. J. Wuhan Tech. Coll. Commun., 2018, 20(1): 95
13 许 杰, 胡 号. 不同变形量下轴承套圈冷轧残余应力演化规律研究 [J]. 武汉交通职业学院学报, 2018, 20(1): 95
14 Ryttberg K, Wedel M K, Recina V, et al. The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel [J]. Mater. Sci. Eng., 2010, 527A(9) : 2431
15 Deng S, Hua L, Shi D. Effect of cold rolling on plastic deformation and microstructure of bearing ring [J]. Mater. Sci. Technol., 2017, 33(8): 984
16 Wei W T, Qin P X, Deng S. Influence of the intermediate annealing on deformation ability of the cold rolled ring [J]. Adv. Mater. Res., 2014, 3016(893-893): 644
17 Hua L, Qian D S, Pan L B. Analysis of plastic penetration in process of groove ball-section ring rolling [J]. J. Mech. Sci. Technol., 2008, 22(7): 1374
18 Zuo Z J. Study on deformation laws and forming process simulation for cold ring rolling [D]. Wuhan: Wuhan University of Technology, 2006
18 左治江. 环件冷辗扩变形规律和工艺模拟研究 [D]. 武汉: 武汉理工大学, 2006
19 Wei W T, Wu M. Effect of annealing cooling rate on microstructure and mechanical property of 100Cr6 steel ring manufactured by cold ring rolling process [J]. J. Cent. South Univ., 2014, 21(1): 14
20 Lu B H, Hua L, Han X H, et al. Microstructure evolution of GCr15 in cold ring rolling and following heat treatment [J]. Mater. Sci. Technol., 2016, 32(16): 1702
21 Deng S, Qian D S. Grain refinement-plastic deformation-texture of bearing ring blank in cold ring rolling [J]. J. Mech. Sci. Technol., 2017, 31(6): 2965
[1] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.