Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 284-292    DOI: 10.11901/1005.3093.2020.344
  研究论文 本期目录 | 过刊浏览 |
基于动态再结晶37CrS4特种钢的流变应力预测模型
杨靖丞1, 王立忠1,2(), 钟志平3, 郑英俊3
1.新疆大学机械工程学院 830047 乌鲁木齐
2.西安交通大学 机械制造系统工程国家重点实验室 710049 西安
3.太仓久信精密模具股份有限公司 215400 苏州
Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization
YANG Jingcheng1, WANG Lizhong1,2(), ZHONG Zhiping3, ZHENG Yingjun3
1.School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
2.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
3.TaiCang Jiuxin Precision Toolings Co. , LTD, Suzhou 215400, China
引用本文:

杨靖丞, 王立忠, 钟志平, 郑英俊. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292.
Jingcheng YANG, Lizhong WANG, Zhiping ZHONG, Yingjun ZHENG. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. Chinese Journal of Materials Research, 2021, 35(4): 284-292.

全文: PDF(12331 KB)   HTML
摘要: 

使用Gleeble-1500D热模拟实验机对37CrS4特种钢进行单道次热压缩实验,研究了37CrS4钢在950~1100℃和0.01 s-1~10 s-1条件下的热压缩流变应力行为。结果表明:这种钢的真应力应变曲线出现了明显的高温塑性变形动态再结晶行为;热变形后的微观组织为典型的板条状马氏体,发生动态再结晶行为的临界应变值与峰值应变比值为0.77162,拟合相关性R2=0.9576;其软化机制为动态回复与动态再结晶的共同作用。引入Zener-Hollomon参数(Z参数)建立再结晶动力学模型,得到了37CrS4特种钢基于动态回复、动态再结晶的分段式流变应力本构模型。本构模型的平均相关性R2=0.9756,分段式本构模型的预测应力与实验应力具有较高的一致性,能较为准确的预测37CrS4高温塑性变形时流变应力的变化。

关键词 金属材料动态再结晶本构模型37CrS4加工硬化临界应变    
Abstract

The flow stress behavior during hot compression of 37CrS4 at 950~1100℃, by strain rate in the range of 0.01 s-1~10 s-1 was investigated by means of single pass hot compression test with Gleeble-1500D thermal simulation machine. The results show that the true stress-strain curve of 37CrS4 special steel presents the occurrence of obvious dynamic recrystallization during high-temperature plastic deformation. The microstructure after hot deformation is typical lath martensite. The ratio of critical strain to peak strain of dynamic recrystallization behavior is 0.77162, and the fitting correlation is 0.9576. The softening mechanism of the material is the synergistic effect of dynamic recovery and dynamic recrystallization. The zener-Hollomon parameter (Z parameter) was introduced to establish the recrystallization kinetic model, and then the segmented flow stress constitutive model of 37CrS4 special steel based on dynamic recovery and dynamic recrystallization was obtained. The average correlation of the constitutive model is 0.9756. The predicted stress of the segmented constitutive model was consistent with the experimental stress, in fact, which could accurately predict the high temperature plasticity of 37CrS4 and the variation of flow stress during deformation.

Key wordsmetallic materials    dynamic recrystallization    constitutive model    37CrS4    work hardening    critical strain
收稿日期: 2020-08-18     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51865057)
作者简介: 杨靖丞,男,1995年生,硕士生
图1  37CrS4钢的原始金相组织
图2  37CrS4钢的真应力应变曲线
图3  37CrS4钢的热变形微观组织金相照片
图4  37CrS4钢的加工硬化曲线
图5  在1100℃、0.01 s-1条件下37CrS4钢的加工硬化率与应力应变的三次拟合关系
图6  37CrS4钢的临界应变模型线性拟合关系
图7  ln[-ln(1-Xd)]与ln[(ε-εc)/εp]的线性关系
图8  材料参数的对数与lnZ间的线性拟合关系
  图9模型预测应力与实验值的比较
1 Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization of metallic materials [J]. Rare Metal Mat. Eng., 2019, 48(11): 3764
1 田宇兴, 刘成, 曹海龙等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
2 Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization model of metallic materials [J]. Mater Rev, 2017, 31 (13): 12
2 孙宇, 周琛, 万志鹏等. 金属材料动态再结晶模型研究现状 [J]. 材料导报, 2017, 31(13): 12
3 Ma W J, Yang X R, Luo L, et al. Dynamic recrystallization model of ultrafine grained pure titanium with composite deformation [J]. Chin. J. Mater. Res., 2020, 34(03): 217
3 马炜杰, 杨西荣, 罗雷等. 复合形变超细晶纯钛的动态再结晶模型 [J]. 材料研究学报, 2020, 34(03): 217
4 Cao Y, Di H S, Zhang J C, et al. Dynamic recrystallization behavior of 800H alloy [J]. Acta Metall. Sin., 2012, 48(10): 1175
4 曹宇, 邸洪双, 张洁岑等. 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48(10): 1175
5 Bai Y B. Study on the forming and microstructure change of 30CrMoA thin-walled cylindrical parts [D]. Qinghuangdao: Yanshan University, 2018.
5 白英博. 30CrMoA薄壁筒形件成形及微观组织变化研究 [D]. 秦皇岛: 燕山大学, 2018
6 Eli S P, Jean G, Mirentxu D, et al. Constitutive description for the design of hot-working operations of a 20MnCr5 steel grade [J]. Mater. Des., 2014, 62: 255
7 Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal de-composition of β-Solid solution in titanium Alloy Ti-10V-2Fe3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
8 Mejía I, Reyes Calderón F, Cabrera J M. Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP steel micro alloyed with Ti, V and Nb [J]. Mater. Sci. Eng. A, 2015, (644): 374
9 Liu S P, Li D F, Guo S L. Critical conditions of dynamic recrystallization for B4Cp/6061Al composite [J]. Rare Metal Mat. Eng.,2017, 46(07): 1815
10 Ouyang D L, Cui X, Lu S Q, et al. Compression deformation behavior and dynamic recrystallization in β phase region of forged TB6 titanium alloy [J]. Chin. J. Mater. Res., 2019, 33(03): 218
10 欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
11 Ouyang D L, Lu S Q, Cui X, et al. Dynamic recrystallization kinetics of β-zone deformation of TB6 titanium alloy [J]. A Chin. J. Mater. Res., 2019, 33(12): 918
11 欧阳德来, 鲁世强, 崔霞等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33(12): 918
12 Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti10V-2Fe-3Al [J]. J. Alloy. Compd., 2017(02), 710
13 Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior and constitutive model of 20MnNiMo steel [J]. J SHANGHAIJIAOTONG U, 2016, 50(07): 1041
13 王梦寒, 王根田, 岳宗敏等. 20MnNiMo钢热变形行为及基于物象的本构模型 [J]. 上海交通大学学报, 2016, 50(07): 1041
14 Hu C. Study on thermoplastic deformation behavior of GH4698 nickel base superalloy [D]. Harbin: Harbin Institute of technology, 2015.
14 胡超. GH4698镍基高温合金热塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
15 Chen X W, Wang J Y, Yang X Q, et al. Hot deformation behavior and dislocation density evolution of Cr8 alloy steel [J]. J.JILIN. U.: TECHNO. ED., 2020, 50(01): 91
15 陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报(工学版), 2020, 50(01): 91
16 Puchi-Cabrera E S, Guérin J D, La J G, et al. Incremental constitutive description of SAE5120 steel deformed under hot-working conditions [J]. Int. J. Mech. Sci., 2017, 133: 619
17 Chen Y Z, Pang Y H, Wang J G, et al. Hot deformation constitutive equation of GH2907 alloy [J]. Rare Metal Mat. Eng., 2019, 48 (11): 3577
17 陈益哲, 庞玉华, 王建国等. GH2907合金热变形本构方程 [J]. 稀有金属材料与工程, 2019, 48(11): 3577
18 Xu M, Mi Z L, Li H, et al. Hot deformation constitutive model of ultra high strength dual phase steel dp1000 based on dislocation density theory [J]. A Chin. J. Mater. Res., 2017, 31(08): 576
18 徐梅, 米振莉, 李辉等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型 [J]. 材料研究学报, 2017, 31(08): 576
19 Quan S J, Song K X, Zhang Y M, et al. Hot deformation behavior and hot working diagram of Ti80 alloy based on MATLAB [J]. Rare Metal Mat. Eng., 2019, 48(11): 3600
19 权思佳, 宋克兴, 张彦敏等. 基于MATLAB的Ti80合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2019, 48(11): 3600
20 Zhang Q H, Su J H, Zhang X B, et al. High temperature deformation behavior and constitutive equation of as cast C19400 alloy based on MATLAB [J]. T. Mater. Heat Treat., 2019, 40(08): 161
20 张启航, 苏娟华, 张学宾等. 基于MATLAB的铸态C19400合金高温变形行为及本构方程 [J]. 材料热处理学报, 2019, 40(08): 161
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.