|
|
基于动态再结晶37CrS4特种钢的流变应力预测模型 |
杨靖丞1, 王立忠1,2( ), 钟志平3, 郑英俊3 |
1.新疆大学机械工程学院 830047 乌鲁木齐 2.西安交通大学 机械制造系统工程国家重点实验室 710049 西安 3.太仓久信精密模具股份有限公司 215400 苏州 |
|
Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization |
YANG Jingcheng1, WANG Lizhong1,2( ), ZHONG Zhiping3, ZHENG Yingjun3 |
1.School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China 2.State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China 3.TaiCang Jiuxin Precision Toolings Co. , LTD, Suzhou 215400, China |
引用本文:
杨靖丞, 王立忠, 钟志平, 郑英俊. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292.
Jingcheng YANG,
Lizhong WANG,
Zhiping ZHONG,
Yingjun ZHENG.
Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. Chinese Journal of Materials Research, 2021, 35(4): 284-292.
1 |
Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization of metallic materials [J]. Rare Metal Mat. Eng., 2019, 48(11): 3764
|
1 |
田宇兴, 刘成, 曹海龙等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
|
2 |
Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization model of metallic materials [J]. Mater Rev, 2017, 31 (13): 12
|
2 |
孙宇, 周琛, 万志鹏等. 金属材料动态再结晶模型研究现状 [J]. 材料导报, 2017, 31(13): 12
|
3 |
Ma W J, Yang X R, Luo L, et al. Dynamic recrystallization model of ultrafine grained pure titanium with composite deformation [J]. Chin. J. Mater. Res., 2020, 34(03): 217
|
3 |
马炜杰, 杨西荣, 罗雷等. 复合形变超细晶纯钛的动态再结晶模型 [J]. 材料研究学报, 2020, 34(03): 217
|
4 |
Cao Y, Di H S, Zhang J C, et al. Dynamic recrystallization behavior of 800H alloy [J]. Acta Metall. Sin., 2012, 48(10): 1175
|
4 |
曹宇, 邸洪双, 张洁岑等. 800H合金动态再结晶行为研究 [J]. 金属学报, 2012, 48(10): 1175
|
5 |
Bai Y B. Study on the forming and microstructure change of 30CrMoA thin-walled cylindrical parts [D]. Qinghuangdao: Yanshan University, 2018.
|
5 |
白英博. 30CrMoA薄壁筒形件成形及微观组织变化研究 [D]. 秦皇岛: 燕山大学, 2018
|
6 |
Eli S P, Jean G, Mirentxu D, et al. Constitutive description for the design of hot-working operations of a 20MnCr5 steel grade [J]. Mater. Des., 2014, 62: 255
|
7 |
Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal de-composition of β-Solid solution in titanium Alloy Ti-10V-2Fe3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
|
8 |
Mejía I, Reyes Calderón F, Cabrera J M. Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP steel micro alloyed with Ti, V and Nb [J]. Mater. Sci. Eng. A, 2015, (644): 374
|
9 |
Liu S P, Li D F, Guo S L. Critical conditions of dynamic recrystallization for B4Cp/6061Al composite [J]. Rare Metal Mat. Eng.,2017, 46(07): 1815
|
10 |
Ouyang D L, Cui X, Lu S Q, et al. Compression deformation behavior and dynamic recrystallization in β phase region of forged TB6 titanium alloy [J]. Chin. J. Mater. Res., 2019, 33(03): 218
|
10 |
欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
|
11 |
Ouyang D L, Lu S Q, Cui X, et al. Dynamic recrystallization kinetics of β-zone deformation of TB6 titanium alloy [J]. A Chin. J. Mater. Res., 2019, 33(12): 918
|
11 |
欧阳德来, 鲁世强, 崔霞等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33(12): 918
|
12 |
Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti10V-2Fe-3Al [J]. J. Alloy. Compd., 2017(02), 710
|
13 |
Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior and constitutive model of 20MnNiMo steel [J]. J SHANGHAIJIAOTONG U, 2016, 50(07): 1041
|
13 |
王梦寒, 王根田, 岳宗敏等. 20MnNiMo钢热变形行为及基于物象的本构模型 [J]. 上海交通大学学报, 2016, 50(07): 1041
|
14 |
Hu C. Study on thermoplastic deformation behavior of GH4698 nickel base superalloy [D]. Harbin: Harbin Institute of technology, 2015.
|
14 |
胡超. GH4698镍基高温合金热塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
15 |
Chen X W, Wang J Y, Yang X Q, et al. Hot deformation behavior and dislocation density evolution of Cr8 alloy steel [J]. J.JILIN. U.: TECHNO. ED., 2020, 50(01): 91
|
15 |
陈学文, 王继业, 杨喜晴等. Cr8合金钢热变形行为及位错密度演变规律 [J]. 吉林大学学报(工学版), 2020, 50(01): 91
|
16 |
Puchi-Cabrera E S, Guérin J D, La J G, et al. Incremental constitutive description of SAE5120 steel deformed under hot-working conditions [J]. Int. J. Mech. Sci., 2017, 133: 619
|
17 |
Chen Y Z, Pang Y H, Wang J G, et al. Hot deformation constitutive equation of GH2907 alloy [J]. Rare Metal Mat. Eng., 2019, 48 (11): 3577
|
17 |
陈益哲, 庞玉华, 王建国等. GH2907合金热变形本构方程 [J]. 稀有金属材料与工程, 2019, 48(11): 3577
|
18 |
Xu M, Mi Z L, Li H, et al. Hot deformation constitutive model of ultra high strength dual phase steel dp1000 based on dislocation density theory [J]. A Chin. J. Mater. Res., 2017, 31(08): 576
|
18 |
徐梅, 米振莉, 李辉等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型 [J]. 材料研究学报, 2017, 31(08): 576
|
19 |
Quan S J, Song K X, Zhang Y M, et al. Hot deformation behavior and hot working diagram of Ti80 alloy based on MATLAB [J]. Rare Metal Mat. Eng., 2019, 48(11): 3600
|
19 |
权思佳, 宋克兴, 张彦敏等. 基于MATLAB的Ti80合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2019, 48(11): 3600
|
20 |
Zhang Q H, Su J H, Zhang X B, et al. High temperature deformation behavior and constitutive equation of as cast C19400 alloy based on MATLAB [J]. T. Mater. Heat Treat., 2019, 40(08): 161
|
20 |
张启航, 苏娟华, 张学宾等. 基于MATLAB的铸态C19400合金高温变形行为及本构方程 [J]. 材料热处理学报, 2019, 40(08): 161
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|